May 2, 2024
Evidence of near-ambient superconductivity in a N-doped lutetium hydride – Nature

Evidence of near-ambient superconductivity in a N-doped lutetium hydride – Nature

  • Onnes, H. K. The resistance of pure mercury at helium temperatures. Commun. Phys. Lab. Univ. Leiden 12, 120 (1911).


    Google Scholar
     

  • Ginzburg, V. L. Nobel Lecture: On superconductivity and superfluidity (what I have and have not managed to do) as well as on the “physical minimum” at the beginning of the XXI century. Rev. Mod. Phys. 76, 981–998 (2004).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bednorz, J. G. & Müller, K. A. Possible high Tc superconductivity in the Ba–La–Cu–O system. Z. Phys. B Condens. Matter 64, 189–193 (1986).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wu, M. K. et al. Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure. Phys. Rev. Lett. 58, 908–910 (1987).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Schilling, A., Cantoni, M., Guo, J. D. & Ott, H. R. Superconductivity above 130 K in the Hg–Ba–Ca–Cu–O system. Nature 363, 56–58 (1993).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Carlsson, A. E. & Ashcroft, N. W. Approaches for reducing the insulator-metal transition pressure in hydrogen. Phys. Rev. Lett. 50, 1305–1308 (1983).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ashcroft, N. W. Hydrogen dominant metallic alloys: high temperature superconductors? Phys. Rev. Lett. 92, 187002 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, H., Naumov, I. I., Hoffmann, R., Ashcroft, N. W. & Hemley, R. J. Potential high-Tc superconducting lanthanum and yttrium hydrides at high pressure. Proc. Natl Acad. Sci. 114, 6990–6995 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peng, F. et al. Hydrogen clathrate structures in rare earth hydrides at high pressures: possible route to room-temperature superconductivity. Phys. Rev. Lett. 119, 107001 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Drozdov, A. P. et al. Superconductivity at 250 K in lanthanum hydride under high pressures. Nature 569, 528–531 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Somayazulu, M. et al. Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures. Phys. Rev. Lett. 122, 27001 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Snider, E. et al. Synthesis of yttrium superhydride superconductor with a transition temperature up to 262 K by catalytic hydrogenation at high pressures. Phys. Rev. Lett. 126, 117003 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Troyan, I. A. et al. Anomalous high‐temperature superconductivity in YH6. Adv. Mater. 33, 2006832 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Snider, E. et al. Retraction article: Room-temperature superconductivity in a carbonaceous sulfur hydride. Nature 586, 373–377 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Snider, E. et al. Retraction note: Room-temperature superconductivity in a carbonaceous sulfur hydride. Nature 610, 804 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Smith, G. A. et al. Carbon content drives high temperature superconductivity in a carbonaceous sulfur hydride below 100 GPa. Chem. Commun. 58, 9064–9067 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Sun, Y., Lv, J., Xie, Y., Liu, H. & Ma, Y. Route to a superconducting phase above room temperature in electron-doped hydride compounds under high pressure. Phys. Rev. Lett. 123, 097001 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ge, Y., Zhang, F. & Hemley, R. J. Room-temperature superconductivity in boron- and nitrogen-doped lanthanum superhydride. Phys. Rev. B 104, 214505 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Grockowiak, A. D. et al. Hot hydride superconductivity above 550 K. Front. Electron. Mater. 2, 837651 (2022).

    Article 

    Google Scholar
     

  • Zhang, Z. et al. Design principles for high-temperature superconductors with a hydrogen-based alloy backbone at moderate pressure. Phys. Rev. Lett. 128, 047001 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Di Cataldo, S., Heil, C., von der Linden, W. & Boeri, L. LaBH8: towards high-Tc low-pressure superconductivity in ternary superhydrides. Phys. Rev. B 104, L020511 (2021).

    Article 

    Google Scholar
     

  • Ashcroft, N. W. Metallic hydrogen: a high-temperature superconductor? Phys. Rev. Lett. 21, 1748 (1968).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Richardson, C. F. & Ashcroft, N. W. High temperature superconductivity in metallic hydrogen: electron-electron enhancements. Phys. Rev. Lett. 78, 118–121 (1997).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Dias, R. P. & Silvera, I. F. Observation of the Wigner-Huntington transition to metallic hydrogen. Science 355, 715–718 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Loubeyre, P., Occelli, F. & Dumas, P. Synchrotron infrared spectroscopic evidence of the probable transition to metal hydrogen. Nature 577, 631–635 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, H., Tse, J. S., Tanaka, K., Iitaka, T. & Ma, Y. Superconductive sodalite-like clathrate calcium hydride at high pressures. Proc. Natl Acad. Sci. 109, 6463–6466 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Drozdov, A. P., Eremets, M. I., Troyan, I. A., Ksenofontov, V. & Shylin, S. I. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature 525, 73–76 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bi, T., Zarifi, N., Terpstra, T. & Zurek, E. in Reference Module in Chemistry, Molecular Sciences and Chemical Engineering (Elsevier, 2019).

  • Hilleke, K. P. & Zurek, E. Tuning chemical precompression: theoretical design and crystal chemistry of novel hydrides in the quest for warm and light superconductivity at ambient pressures. J. Appl. Phys. 131, 070901 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Di Cataldo, S., von der Linden, W. & Boeri, L. First-principles search of hot superconductivity in La-X-H ternary hydrides. npj Comput. Mater. 8, 2 (2022).

  • Di Cataldo, S., Qulaghasi, S., Bachelet, G. B. & Boeri, L. High-Tc superconductivity in doped boron-carbon clathrates. Phys. Rev. B 105, 064516 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Ye, X., Zarifi, N., Zurek, E., Hoffmann, R. & Ashcroft, N. W. High hydrides of scandium under pressure: potential superconductors. J. Phys. Chem. C 122, 6298–6309 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751–767 (1976).

    Article 
    ADS 

    Google Scholar
     

  • Rumble, J. R. (ed.) CRC Handbook of Chemistry and Physics 102nd edn (CRC Press/Taylor & Francis, 2021).

  • Greenwood, N. N. & Earnshaw, A. (eds) Chemistry of the Elements 2nd edn (Butterworth-Heinemann, 1997).

  • Zhou, D. et al. Superconducting praseodymium superhydrides. Sci. Adv. 6, 6849–6877 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Zhou, D. et al. High-pressure synthesis of magnetic neodymium polyhydrides. J. Am. Chem. Soc. 142, 2803–2811 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Semenok, D. V. et al. Effect of magnetic impurities on superconductivity in LaH10. Adv. Mater. 34, 2204038 (2022).

  • Sun, W., Kuang, X., Keen, H. D. J., Lu, C. & Hermann, A. Second group of high-pressure high-temperature lanthanide polyhydride superconductors. Phys. Rev. B 102, 144524 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Jaroń, T. et al. Synthesis, structure, and electric conductivity of higher hydrides of ytterbium at high pressure. Inorg. Chem. 61, 8694–8702 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Song, H. et al. High Tc superconductivity in heavy rare earth hydrides. Chin. Phys. Lett. 38, 107401 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Cornelius, A. L., Lawler, K. V. & Salamat, A. Understanding hydrogen rich superconductors: importance of effective mass and dirty limit. Preprint at https://doi.org/10.48550/arxiv.2202.04254 (2022).

  • Dasenbrock-Gammon, N., McBride, R., Yoo, G., Dissanayake, S. & Dias, R. Second harmonic AC calorimetry technique within a diamond anvil cell. Rev. Sci. Instrum. 93, 093901 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Klesnar, H. P. & Rogl, P. Phase relations in the ternary systems rare-earth metal (RE)-boron-nitrogen, where RE = Tb, Dy, Ho, Er, Tm, Lu, Sc and Y. High Temp. High Press. 22, 453–457 (1990).

    CAS 

    Google Scholar
     

  • Pebler, A. & Wallace, W. E. Crystal structures of some lanthanide hydrides. J. Phys. Chem. 66, 148–151 (1962).

    Article 
    CAS 

    Google Scholar
     

  • Bonnet, J. E. & Daou, J. N. Rare‐earth dihydride compounds: lattice thermal expansion and investigation of the thermal dissociation. J. Appl. Phys. 48, 964–968 (1977).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Weaver, J. H., Rosei, R. & Peterson, D. T. Electronic structure of metal hydrides. I. Optical studies of ScH2, YH2, and LuH2. Phys. Rev. B 19, 4855–4866 (1979).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Peterman, D. J., Harmon, B. N., Marchiando, J. & Weaver, J. H. Electronic structure of metal hydrides. II. Band theory of ScH2 and YH2. Phys. Rev. B 19, 4867–4875 (1979).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Daou, J. N., Vajda, P., Burger, J. P. & Shaltiel, D. Percolating electrical conductivity in two phased LuH2+x compounds. Europhys. Lett. 6, 647–651 (1988).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Daou, J. N., Vajda, P., Burger, J. P. & Shaltiel, D. Percolating electrical conductivity in two phased LuH2+x compounds. Europhys. Lett. 8, 587 (1989).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Mansmann, M. & Wallace, W. E. The structure of HoD3. J. Phys. 25, 454–459 (1964).

    Article 
    CAS 

    Google Scholar
     

  • Palasyuk, T. & Tkacz, M. Pressure-induced structural phase transition in rare-earth trihydrides. Part I. (GdH3, HoH3, LuH3). Solid State Commun. 133, 481–486 (2005).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Daou, J. N., Lucasson, A., Vajda, P. & Burger, J. P. Observation of the optical and acoustic electron-phonon coupling in Sc, Y and Lu dihydrides and dideuterides by electrical resistivity. J. Phys. F Metal Phys. 14, 2983–2993 (1984).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kataoka, R. et al. The origin of the highly crystallized face-centered cubic YH3 high-pressure phase when quenched to ambient condition. Mater. Today Commun. 31, 103265 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Renaudin, G., Fischer, P. & Yvon, K. Neodymium trihydride, NdH3, with tysonite type structure. J. Alloys Compd. 313, L10–L14 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Villa-Cortés, S. & De la Peña-Seaman, O. Effect of van Hove singularity on the isotope effect and critical temperature of H3S hydride superconductor as a function of pressure. J. Phys. Chem. Solids 161, 110451 (2022).

    Article 

    Google Scholar
     

  • Liang, X. et al. Prediction of high-Tc superconductivity in ternary lanthanum borohydrides. Phys. Rev. B 104, 134501 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Belli, F. & Errea, I. Impact of ionic quantum fluctuations on the thermodynamic stability and superconductivity of. Phys. Rev. B 106, 134509 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Errea, I. Superconducting hydrides on a quantum landscape. J. Phys. Condens. Matter 34, 231501 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Shen, G. et al. Toward an international practical pressure scale: a proposal for an IPPS ruby gauge (IPPS-Ruby2020). High Press. Res. 40, 299–314 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Datchi, F. et al. Optical pressure sensors for high-pressure–high-temperature studies in a diamond anvil cell. High Press. Res. 27, 447–463 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Dias, R. P., Yoo, C.-S., Kim, M. & Tse, J. S. Insulator-metal transition of highly compressed carbon disulfide. Phys. Rev. B 84, 144104 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Li, Y.-S., Borth, R., Hicks, C. W., Mackenzie, A. P. & Nicklas, M. Heat-capacity measurements under uniaxial pressure using a piezo-driven device. Rev. Sci. Instrum. 91, 103903 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kraftmakher, Y. Modulation Calorimetry. Theory and Applications (Springer, 2004).

  • Debessai, M., Hamlin, J. J. & Schilling, J. S. Comparison of the pressure dependences of Tc in the trivalent d-electron superconductors Sc, Y, La, and Lu up to megabar pressures. Phys. Rev. B 78, 064519 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Giannozzi, P. et al. Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys. Condens. Matter 29, 465901 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • van Setten, M. J. et al. The PseudoDojo: training and grading a 85 element optimized norm-conserving pseudopotential table. Comput. Phys. Commun. 226, 39–54 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J. & Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys. Rev. B 57, 1505–1509 (1998).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Cococcioni, M. & de Gironcoli, S. Linear response approach to the calculation of the effective interaction parameters in the LDA+U method. Phys. Rev. B 71, 035105 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Topsakal, M. & Wentzcovitch, R. M. Accurate projected augmented wave (PAW) datasets for rare-earth elements (RE = La–Lu). Comput. Mater. Sci. 95, 263–270 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Dal Corso, A. Pseudopotentials periodic table: from H to Pu. Comput. Mater. Sci. 95, 337–350 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article 
    ADS 

    Google Scholar
     

  • Peterman, D. J., Weaver, J. H. & Peterson, D. T. Electronic structure of metal hydrides. V. x-dependent properties of LaHx (1.9 < ~x < 2.9) and NdHx (2.01 < ~x < ~2.27). Phys. Rev. B 23, 3903–3913 (1981).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Knappe, P., Müller, H. & Mayer, H. W. Tetragonal rare earth hydrides REH(D)≈2.33 (RE = La, Ce, Pr, Nd, Sm) and a neutron diffraction study of NdD2.36. J. Less Common Metals 95, 323–333 (1983).

    Article 
    CAS 

    Google Scholar
     

  • Errea, I. et al. Quantum hydrogen-bond symmetrization in the superconducting hydrogen sulfide system. Nature 532, 81–84 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Source link