May 23, 2024
Evolution of immune genes is associated with the Black Death – Nature

Evolution of immune genes is associated with the Black Death – Nature

  • Inhorn, M. C. & Brown, P. J. The anthropology of infectious disease. Anu. Rev. Anthrolpol. 19, 89–117 (1990).

    Article 

    Google Scholar
     

  • Fumagalli, M. et al. Signatures of environmental genetic adaptation pinpoint pathogens as the main selective pressure through human evolution. PLoS Genet. 7, e1002355 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bos, K. I. et al. A draft genome of Yersinia pestis from victims of the Black Death. Nature 478, 506–510 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Benedictow, O. J. The Black Death, 1346–1353: The Complete History (Boydell Press, 2004).

  • Quintana-Murci, L. & Clark, A. G. Population genetic tools for dissecting innate immunity in humans. Nat. Rev. Immun. 13, 280 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Karlsson, E. K., Kwiatkowski, D. P. & Sabeti, P. C. Natural selection and infectious disease in human populations. Nat. Rev. Genet. 15, 379–393 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Allison, A. C. Genetic control of resistance to human malaria. Curr. Opin. Immunol. 21, 499–505 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kerner, G. et al. Human ancient DNA analyses reveal the high burden of tuberculosis in Europeans over the last 2,000 years. Am. J. Hum. Genet. 108, 517–524 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Varlık, N. New science and old sources: why the Ottoman experience of plague matters. The Medieval Globe 1, 9 (2014).


    Google Scholar
     

  • Stathakopoulos, D. C. Famine and Pestilence in the Late Roman and Early Byzantine Empire: A Systematic Survey of Subsistence Crises and Epidemics (Routledge, 2017).

  • Green, M. H. The four Black Deaths. Am. Hist. Rev. 125, 1601–1631 (2021).

    Article 

    Google Scholar
     

  • DeWitte, S. N. & Wood, J. W. Selectivity of Black Death mortality with respect to preexisting health. Proc. Natl Acad. Sci. USA 105, 1436–1441 (2008).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Earn, D. J., Ma, J., Poinar, H., Dushoff, J. & Bolker, B. M. Acceleration of plague outbreaks in the second pandemic. Proc. Natl Acad. Sci. USA 117, 27703–27711 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Immel, A. et al. Analysis of genomic DNA from medieval plague victims suggests long-term effect of Yersinia pestis on human immunity genes. Mol. Biol. Evol. 38, 4059–4076 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Di, D., Simon Thomas, J., Currat, M., Nunes, J. M. & Sanchez-Mazas, A. Challenging ancient DNA results about putative HLA protection or susceptibility to Yersinia pestis. Mol. Bio. Evol. 39, 1537–1719 (2022).

    Article 

    Google Scholar
     

  • Grainger, I., Hawkins, D., Cowal, L. & Mikulski, R. The Black Death Cemetery, East Smithfield, London (Museum of London Archaeology Service, 2008).

  • Klunk, J. et al. Genetic resiliency and the Black Death: no apparent loss of mitogenomic diversity due to the Black Death in medieval London and Denmark. Am. J. Phys. Anthropol. 169, 240–252 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Morin, P. A., Chambers, K. E., Boesch, C. & Vigilant, L. Quantitative polymerase chain reaction analysis of DNA from noninvasive samples for accurate microsatellite genotyping of wild chimpanzees (Pan troglodytes verus). Mol. Ecol. 10, 1835–1844 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gronau, I., Hubisz, M. J., Gulko, B., Danko, C. G. & Siepel, A. Bayesian inference of ancient human demography from individual genome sequences. Nat. Genet. 43, 1031–1034 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bollback, J. P., York, T. L. & Nielsen, R. Estimation of 2Nes from temporal allele frequency data. Genetics 179, 497–502 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Andrés, A. M. et al. Balancing selection maintains a form of ERAP2 that undergoes nonsense-mediated decay and affects antigen presentation. PLoS Genet. 6, e1001157 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ye, C. J. et al. Genetic analysis of isoform usage in the human anti-viral response reveals influenza-specific regulation of ERAP2 transcripts under balancing selection. Genome Research 28, 1812–1825 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pachulec, E. et al. Enhanced macrophage M1 polarization and resistance to apoptosis enable resistance to plague. J. Infect. Dis. 216, 761–770 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shannon, J. G., Bosio, C. F. & Hinnebusch, B. J. Dermal neutrophil, macrophage and dendritic cell responses to Yersinia pestis transmitted by fleas. PLoS Pathog. 11, e1004734 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pujol, C. & Bliska, J. B. The ability to replicate in macrophages is conserved between Yersinia pestis and Yersinia pseudotuberculosis. Infect. Immun. 71, 5892–5899 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arifuzzaman, M. et al. Necroptosis of infiltrated macrophages drives Yersinia pestis dispersal within buboes. JCI Insight 3, e122188 (2018).

    Article 
    PubMed Central 

    Google Scholar
     

  • Nédélec, Y. et al. Genetic ancestry and natural selection drive population differences in immune responses to pathogens. Cell 167, 657–669 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Quach, H. et al. Genetic adaptation and neandertal admixture shaped the immune system of human populations. Cell 167, 643–656 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fitzgerald, K. A. et al. LPS-TLR4 signaling to IRF-3/7 and NF-kappaB involves the toll adapters TRAM and TRIF. J. Exp. Med. 198, 1043–1055 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kawahara, K., Tsukano, H., Watanabe, H., Lindner, B. & Matsuura, M. Modification of the structure and activity of lipid A in Yersinia pestis lipopolysaccharide by growth temperature. Infect. Immun. 70, 4092–4098 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kagan, J. C. et al. TRAM couples endocytosis of Toll-like receptor 4 to the induction of interferon-beta. Nat. Immunol. 9, 361–368 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tanioka, T. et al. Human leukocyte-derived arginine aminopeptidase: the third member of the oxytocinase subfamily of aminopeptidases. J. Biol. Chem. 278, 32275–32283 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Saveanu, L. et al. Concerted peptide trimming by human ERAP1 and ERAP2 aminopeptidase complexes in the endoplasmic reticulum. Nat. Immun. 6, 689–697 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Yao, Y., Liu, N., Zhou, Z. & Shi, L. Influence of ERAP1 and ERAP2 gene polymorphisms on disease susceptibility in different populations. Hum. Immunol. 80, 325–334 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Saulle, I., Vicentini, C., Clerici, M. & Blasin, M. An overview on ERAP roles in infectious diseases. Cells 9, 720 (2020).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Tedeschi, V. et al. The impact of the ‘mis-peptidome’ on HLA class I-mediated diseases: contribution of ERAP1 and ERAP2 and effects on the immune response. Int. J. Mol. Sci. 21, 9608 (2020).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Lorente, E. et al. Modulation of natural HLA-B*27:05 ligandome by ankylosing spondylitis-associated endoplasmic reticulum aminopeptidase 2 (ERAP2). Mol. Cell. Proteomics 19, P994–P1004 (2020).

  • Bergman, M. A., Loomis, W. P., Mecsas, J., Starnbach, M. N. & Isberg, R. R. CD8+ T cells restrict Yersinia pseudotuberculosis infection: bypass of anti-phagocytosis by targeting antigen-presenting cells. PLoS Pathog. 5, e1000573 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Szaba, F. M. et al. TNFα and IFNγ but not perforin are critical for CD8 T cell-mediated protection against pulmonary Yersinia pestis infection. PLoS Pathog. 10, e1004142 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saulle, I. et al. ERAPs reduce in vitro HIV infection by activating innate immune response. J. Immunol. 206, 1609–1617 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jordan, W. C. The Great Famine: Northern Europe in the Early Fourteenth Century (Princeton Univ. Press, 1997).

  • Hoyle, R. in Famine in European History (eds Alfani, G. & Gráda, C. Ó.) 141–165 (Cambridge Univ. Press, 2017).

  • DeWitte, S. & Slavin, P. Between famine and death: England on the eve of the Black Death—evidence from paleoepidemiology and manorial accounts. J. Interdiscipl. Hist. 44, 37–60 (2013).

    Article 

    Google Scholar
     

  • Ratner, D. et al. Manipulation of interleukin-1β and interleukin-18 production by Yersinia pestis effectors YopJ and YopM and redundant impact on virulence. J. Biol. Chem. 291, 9894–9905 (2016).

  • Di Narzo, A. F. et al. Blood and intestine eQTLs from an anti-TNF-resistant Crohn’s disease cohort inform IBD genetic association loci. Clin. Transl. Gastroen. 7, e177 (2016).

    Article 

    Google Scholar
     

  • Laufer, V. A. et al. Genetic influences on susceptibility to rheumatoid arthritis in African-Americans. Hum. Mol. Genet. 28, 858–874 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Y. et al. Identification of 38 novel loci for systemic lupus erythematosus and genetic heterogeneity between ancestral groups. Nat. Commun. 12, 771 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Sidell, J., Thomas, C. & Bayliss, A. Validating and improving archaeological phasing at St. Mary Spital, London. Radiocarbon 49, 593–610 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Krylova, O. & Earn, D. J. Patterns of smallpox mortality in London, England, over three centuries. PLoS Biol. 18, e3000506 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Greater London, Inner London & Outer London population & density history. Demographia http://www.demographia.com/dm-lon31.htm (2001).

  • Consortium, G. P. A global reference for human genetic variation. Nature 526, 68–74 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Source link