April 28, 2024
Evolution of the germline mutation rate across vertebrates – Nature

Evolution of the germline mutation rate across vertebrates – Nature

  • Lynch, M. et al. Genetic drift, selection and the evolution of the mutation rate. Nat. Rev. Genet. 17, 704–714 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bergeron, L. A. et al. The mutationathon highlights the importance of reaching standardization in estimates of pedigree-based germline mutation rates. eLife 11, e73577 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lynch, M. Evolution of the mutation rate. Trends Genet. 26, 345–352 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Acuna-Hidalgo, R., Veltman, J. A. & Hoischen, A. New insights into the generation and role of de novo mutations in health and disease. Genome Biol. 17, 241 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sturtevant, A. H. Essays on evolution. I. On the effects of selection on mutation rate. Q. Rev. Biol. 12, 464–467 (1937).

    Article 

    Google Scholar
     

  • Zhang, G. The mutation rate as an evolving trait. Nat. Rev. Genet. 24, 3 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Mugal, C. F., Arndt, P. F., Holm, L. & Ellegren, H. Evolutionary consequences of DNA methylation on the GC content in vertebrate genomes. G3 5, 441–447 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baer, C. F., Miyamoto, M. M. & Denver, D. R. Mutation rate variation in multicellular eukaryotes: causes and consequences. Nat. Rev. Genet. 8, 619–631 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wright, S. D., Ross, H. A., Jeanette Keeling, D., McBride, P. & Gillman, L. N. Thermal energy and the rate of genetic evolution in marine fishes. Evol. Ecol. 25, 525–530 (2011).

    Article 

    Google Scholar
     

  • Ohta, T. An examination of the generation-time effect on molecular evolution. Proc. Natl Acad. Sci. USA 90, 10676–10680 (1993).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martin, A. P. & Palumbi, S. R. Body size, metabolic rate, generation time, and the molecular clock. Proc. Natl Acad. Sci. USA 90, 4087–4091 (1993).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bergeron, L. A. et al. The germline mutational process in rhesus macaque and its implications for phylogenetic dating. Gigascience 10, giab029 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, F. L. et al. A comparison of humans and baboons suggests germline mutation rates do not track cell divisions. PLoS Biol. 18, e3000838 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, R. J. et al. Paternal age in rhesus macaques is positively associated with germline mutation accumulation but not with measures of offspring sociability. Genome Res. 30, 826–834 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Campbell, C. R. et al. Pedigree-based and phylogenetic methods support surprising patterns of mutation rate and spectrum in the gray mouse lemur. Heredity 127, 233–244 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Besenbacher, S., Hvilsom, C., Marques-Bonet, T., Mailund, T. & Schierup, M. H. Direct estimation of mutations in great apes reconciles phylogenetic dating. Nat. Ecol. Evol. 3, 286–292 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Thomas, G. W. C. et al. Reproductive longevity predicts mutation rates in primates. Curr. Biol. 28, 3193–3197.e5 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cagan, A. et al. Somatic mutation rates scale with lifespan across mammals. Nature 604, 517–524 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chintalapati, M. & Moorjani, P. Evolution of the mutation rate across primates. Curr. Opin. Genet. Dev. 62, 58–64 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, R. J. et al. De novo mutations in domestic cat are consistent with an effect of reproductive longevity on both the rate and spectrum of mutations. Mol. Biol. Evol. 39, msac147 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Venn, O. et al. Strong male bias drives germline mutation in chimpanzees. Science 344, 1272–1275 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jónsson, H. et al. Parental influence on human germline de novo mutations in 1,548 trios from Iceland. Nature 549, 519–522 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Tatsumoto, S. et al. Direct estimation of de novo mutation rates in a chimpanzee parent-offspring trio by ultra-deep whole genome sequencing. Sci. Rep. 7, 13561 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yuen, R. K. C. et al. Genome-wide characteristics of de novo mutations in autism. npj Genomic Med. 1, 160271–1602710 (2016).

    Article 

    Google Scholar
     

  • Wang, H. & Zhu, X. De novo mutations discovered in 8 Mexican American families through whole genome sequencing. BMC Proc. 8, S24 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, W.-H., Yi, S. & Makova, K. Male-driven evolution. Curr. Opin. Genet. Dev. 12, 650–656 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Miyata, T., Hayashida, H., Kuma, K., Mitsuyasu, K. & Yasunaga, T. Male-driven molecular evolution: a model and nucleotide sequence analysis. Cold Spring Harb. Symp. Quant. Biol. 52, 863–867 (1987).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wilson Sayres, M. A. & Makova, K. D. Genome analyses substantiate male mutation bias in many species. BioEssays 33, 938–945 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Ellegren, H. & Fridolfsson, A.-K. Male-driven evolution of DNA sequences in birds. Nat. Genet. 17, 182–184 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sayres, M. A. W., Venditti, C., Pagel, M. & Makova, K. D. Do variations in substitution rates and male mutations bias correlate with life-history traits? A study of 32 mammalian genomes. Evolution 65, 2800–2815 (2011).

    Article 

    Google Scholar
     

  • de Manuel, M., Wu, F. L. & Przeworski, M. A paternal bias in germline mutation is widespread in amniotes and can arise independently of cell division numbers. eLife 11, e80008 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Francioli, L. C. et al. Genome-wide patterns and properties of de novo mutations in humans. Nat. Genet. 47, 822–826 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao, Z. et al. Overlooked roles of DNA damage and maternal age in generating human germline mutations. Proc. Natl Acad. Sci. USA 116, 9491–9500 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lindsay, S. J., Rahbari, R., Kaplanis, J., Keane, T. & Hurles, M. E. Similarities and differences in patterns of germline mutation between mice and humans. Nat. Commun. 10, 4053 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gibbs, R. A. et al. Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature 428, 493–520 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Blumenstiel, J. P. Sperm competition can drive a male-biased mutation rate. J. Theor. Biol. 249, 624–632 (2007).

    Article 
    ADS 
    MathSciNet 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Birkhead, T. R., Briskie, J. V. & Møller, A. P. Male sperm reserves and copulation frequency in birds. Behav. Ecol. Sociobiol. 32, 85–93 (1993).

    Article 

    Google Scholar
     

  • Moller, A. P. Sperm competition, sperm depletion, paternal care, and relative testis size in birds. Am. Nat. 137, 882–906 (1991).

    Article 

    Google Scholar
     

  • Birkhead, T. R. & Montgomerie, R. Three decades of sperm competition in birds. Phil. Trans. R. Soc. B 375, 20200208 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brouwer, L. & Griffith, S. C. Extra-pair paternity in birds. Mol. Ecol. 28, 4864–4882 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hunter, F. M., Harcourt, R., Wright, M. & Davis, L. S. Strategic allocation of ejaculates by male Adélie penguins. Proc. R. Soc. Lond. B 267, 1541–1545 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Hamamah, S. & Gatti, J. L. Role of the ionic environment and internal pH on sperm activity. Hum. Reprod. 13, 20–30 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gribbins, K. Reptilian spermatogenesis. Spermatogenesis 1, 250–269 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gribbins, K. M., Gist, D. H. & Congdon, J. D. Cytological evaluation of spermatogenesis and organization of the germinal epithelium in the male slider turtle, Trachemys scripta. J. Morphol. 255, 337–346 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Schulz, R. W. et al. Spermatogenesis in fish. Gen. Comp. Endocrinol. 165, 390–411 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lubzens, E., Young, G., Bobe, J. & Cerdà, J. Oogenesis in teleosts: how fish eggs are formed. Gen. Comp. Endocrinol. 165, 367–389 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jalabert, B. Particularities of reproduction and oogenesis in teleost fish compared to mammals. Reprod. Nutr. Dev. 45, 261–279 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Jónsson, H. et al. Multiple transmissions of de novo mutations in families. Nat. Genet. 50, 1674–1680 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Martin, H. C. et al. Insights into platypus population structure and history from whole-genome sequencing. Mol. Biol. Evol. 35, 1238–1252 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smeds, L., Qvarnström, A. & Ellegren, H. Direct estimate of the rate of germline mutation in a bird. Genome Res. 26, 1211–1218 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feng, C. et al. Moderate nucleotide diversity in the Atlantic herring is associated with a low mutation rate. eLife 6, e23907 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao, Z., Wyman, M. J., Sella, G. & Przeworski, M. Interpreting the dependence of mutation rates on age and time. PLoS Biol. 14, e1002355 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goodman, M. Rates of molecular evolution: the hominoid slowdown. BioEssays 3, 9–14 (1985).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moorjani, P., Amorim, C. E. G., Arndt, P. F. & Przeworski, M. Variation in the molecular clock of primates. Proc. Natl Acad. Sci. USA 113, 10607–10612 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scally, A. & Durbin, R. Revising the human mutation rate: implications for understanding human evolution. Nat. Rev. Genet. 13, 745–753 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Soojin, V. Y. Morris Goodman’s hominoid rate slowdown: the importance of being neutral. Mol. Phylogenet. Evol. 66, 569–574 (2013).

    Article 

    Google Scholar
     

  • Faircloth, B. C. et al. Ultraconserved elements anchor thousands of genetic markers spanning multiple evolutionary timescales. Syst. Biol. 61, 717–726 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Garcia, J. A. & Lohmueller, K. E. Negative linkage disequilibrium between amino acid changing variants reveals interference among deleterious mutations in the human genome. PLoS Genet. 17, e1009676 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hedrick, P. W. & Garcia-Dorado, A. Understanding inbreeding depression, purging, and genetic rescue. Trends Ecol. Evol. 31, 940–952 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Bonnet, T. et al. Genetic variance in fitness indicates rapid contemporary adaptive evolution in wild animals. Science 376, 1012–1016 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Manichaikul, A. et al. Robust relationship inference in genome-wide association studies. Bioinformatics 26, 2867–2873 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Y. et al. SOAPnuke: a MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data. Gigascience 7, 1–6 (2017).

    ADS 
    PubMed Central 

    Google Scholar
     

  • Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Poplin, R. et al. Scaling accurate genetic variant discovery to tens of thousands of samples. Preprint at bioRxiv https://doi.org/10.1101/201178 (2018).

  • Kong, A. et al. Rate of de novo mutations and the importance of father’s age to disease risk. Nature 488, 471–475 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Besenbacher, S. et al. Novel variation and de novo mutation rates in population-wide de novo assembled Danish trios. Nat. Commun. 6, 5969 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27, 2987–2993 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Robinson, J. T. et al. Integrative genomics viewer. Nat. Biotechnol. 29, 24–26 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alfaro, M. E. et al. Explosive diversification of marine fishes at the Cretaceous–Palaeogene boundary. Nat. Ecol. Evol. 2, 688–696 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Faircloth, B. C. PHYLUCE is a software package for the analysis of conserved genomic loci. Bioinformatics 32, 786–788 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Katoh, K., Misawa, K., Kuma, K. I. & Miyata, T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059–3066 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Minh, B. Q. et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sanderson, M. J. Estimating absolute rates of molecular evolution and divergence times: a penalized likelihood approach. Mol. Biol. Evol. 19, 101–109 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, J. & Sanderson, M. J. Penalized likelihood phylogenetic inference: bridging the parsimony-likelihood gap. Syst. Biol. 57, 665–674 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Meredith, R. W. et al. Impacts of the cretaceous terrestrial revolution and KPg extinction on mammal diversification. Science 334, 521–524 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hughes, L. C. et al. Comprehensive phylogeny of ray-finned fishes (Actinopterygii) based on transcriptomic and genomic data. Proc. Natl Acad. Sci. USA 115, 6249–6254 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Benton, M. J. & Donoghue, P. C. J. Paleontological evidence to date the tree of life. Mol. Biol. Evol. 24, 26–53 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Green, R. E. et al. Three crocodilian genomes reveal ancestral patterns of evolution among archosaurs. Science 346, 1254449 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sues, H. D. & Olsen, P. E. Triassic vertebrates of Gondwanan aspect from the Richmond basin of Virginia. Science 249, 1020–1023 (1990).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bauer, A. M., Böhme, W. & Weitschat, W. An Early Eocene gecko from Baltic amber and its implications for the evolution of gecko adhesion. J. Zool. 265, 327–332 (2005).

    Article 

    Google Scholar
     

  • Gelabert, P. et al. Evolutionary history, genomic adaptation to toxic diet, and extinction of the Carolina parakeet. Curr. Biol. 30, 108–114.e5 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maretty, L. et al. Sequencing and de novo assembly of 150 genomes from Denmark as a population reference. Nature 548, 87–91 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Orme, D. et al. The caper package: comparative analysis of phylogenetics and evolution in R. R version 1.0.1 https://cran.r-project.org/package=caper (2018).

  • Li, H. & Durbin, R. Inference of human population history from individual whole-genome sequences. Nature 475, 493–496 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schmitz, J. et al. Genome sequence of the basal haplorrhine primate Tarsius syrichta reveals unusual insertions. Nat. Commun. 7, 12997 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vijay, N. et al. Population genomic analysis reveals contrasting demographic changes of two closely related dolphin species in the last glacial. Mol. Biol. Evol. 35, 2026–2033 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Y. C. et al. Genome-wide evolutionary analysis of natural history and adaptation in the world’s tigers. Curr. Biol. 28, 3840–3849.e6 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, S., Zhao, L., Xiao, S. & Gao, T. Whole genome resequencing data for three rockfish species of Sebastes. Sci. Data 6, 97 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yuan, Z. et al. Historical demography of common carp estimated from individuals collected from various parts of the world using the pairwise sequentially markovian coalescent approach. Genetica 146, 235–241 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Fitak, R. R. & Johnsen, S. Green sea turtle (Chelonia mydas) population history indicates important demographic changes near the mid-Pleistocene transition. Mar. Biol. 165, 110 (2018).

    Article 

    Google Scholar
     

  • Nadachowska-Brzyska, K., Li, C., Smeds, L., Zhang, G. & Ellegren, H. Temporal dynamics of avian populations during pleistocene revealed by whole-genome sequences. Curr. Biol. 25, 1375–1380 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Korneliussen, T. S., Albrechtsen, A. & Nielsen, R. ANGSD: analysis of next generation sequencing data. BMC Bioinformatics 15, 356 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Milholland, B. et al. Differences between germline and somatic mutation rates in humans and mice. Nat. Commun. 8, 15183 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • The 1000 Genomes Project. Variation in genome-wide mutation rates within and between human families. Nat. Genet. 43, 712–714 (2011).

  • Rahbari, R. et al. Timing rates and spectra of human germline mutation. Nat. Genet. 48, 126–133 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wong, W. S. W. et al. New observations on maternal age effect on germline de novo mutations. Nat. Commun. 7, 10486 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Turner, T. N. et al. Genomic patterns of de novo mutation in simplex autism. Cell 171, 710–722.e12 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sasani, T. A. et al. Large three-generation human families reveal post-zygotic mosaicism and variability in germline mutation accumulation. eLife 8, e46922 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kessler, M. D. et al. De novo mutations across 1465 diverse genomes reveal mutational insights and reductions in the Amish founder population. Proc. Natl Acad. Sci. USA 117, 2560–2569 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Malinsky, M. et al. Whole-genome sequences of Malawi cichlids reveal multiple radiations interconnected by gene flow. Nat. Ecol. Evol. 2, 1940–1955 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koch, E. M. et al. De novo mutation rate estimation in wolves of known pedigree. Mol. Biol. Evol. 36, 2536–2547 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harland, C. et al. Frequency of mosaicism points towards mutation-prone early cleavage cell divisions in cattle. Preprint at bioRxiv https://doi.org/10.1101/079863 (2017).

  • Pfeifer, S. P. Direct estimate of the spontaneous germ line mutation rate in African green monkeys. Evolution 71, 2858–2870 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Source link