May 30, 2024

Exponential suppression of bit or phase errors with cyclic error correction – Nature

  • 1.

    Preskill, J. Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018).

    Article 

    Google Scholar
     

  • 2.

    Shor, P. W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41, 303 (1999).

    ADS 
    MathSciNet 
    Article 

    Google Scholar
     

  • 3.

    Fowler, A. G., Mariantoni, M., Martinis, J. M. & Cleland, A. N. Surface codes: towards practical large-scale quantum computation. Phys. Rev. A 86, 032324 (2012).

    ADS 
    Article 

    Google Scholar
     

  • 4.

    Childs, A. M., Maslov, D., Nam, Y., Ross, N. J. & Su, Y. Toward the first quantum simulation with quantum speedup. Proc. Natl Acad. Sci. USA 115, 9456–9461(2018).

    MathSciNet 
    CAS 
    Article 

    Google Scholar
     

  • 5.

    Campbell, E., Khurana, A. & Montanaro, A. Applying quantum algorithms to constraint satisfaction problems. Quantum 3, 167 (2019).

    Article 

    Google Scholar
     

  • 6.

    Kivlichan, I. D. et al. Improved fault-tolerant quantum simulation of condensed-phase correlated electrons via Trotterizatio. Quantum 4, 296 (2020).

    Article 

    Google Scholar
     

  • 7.

    Gidney, C. & Ekerå, M. How to factor 2048 bit RSA integers in 8 hours using 20 million noisy qubits. Quantum 5, 433 (2021).

    Article 

    Google Scholar
     

  • 8.

    Lee, J. et al. Even more efficient quantum computations of chemistry through tensor hypercontraction. Preprint at https://arxiv.org/abs/2011.03494 (2020).

  • 9.

    Lemieux, J., Duclos-Cianci, G., Sénéchal, D. & Poulin, D. Resource estimate for quantum many-body ground-state preparation on a quantum computer. Phys. Rev. A 103, 052408 (2021).

    ADS 
    MathSciNet 
    CAS 
    Article 

    Google Scholar
     

  • 10.

    Ballance, C., Harty, T., Linke, N., Sepiol, M. & Lucas, D. High-fidelity quantum logic gates using trapped-ion hyperfine qubits. Phys. Rev. Lett. 117, 060504 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 11.

    Huang, W. et al. Fidelity benchmarks for two-qubit gates in silicon. Nature 569, 532–536 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 12.

    Rol, M. et al. Phys. Rev. Lett. 123, 120502 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 13.

    Jurcevic, P. et al., Demonstration of quantum volume 64 on a superconducting quantum computing system. Quantum Sci. Technol. 6, 020520 (2021).

    Article 

    Google Scholar
     

  • 14.

    Foxen, B. et al. Demonstrating a continuous set of two-qubit gates for near-term quantum algorithms. Phys. Rev. Lett. 125, 120504 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 15.

    Shor, P. W. Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493 (1995).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 16.

    Calderbank, A. R. & Shor, P. W. Good quantum error-correcting codes exist. Phys. Rev. A 54, 1098 (1996).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 17.

    Terhal, B. M. Quantum error correction for quantum memories. Rev. Mod. Phys. 87, 307 (2015).

    ADS 
    MathSciNet 
    Article 

    Google Scholar
     

  • 18.

    Horsman, C., Fowler, A. G., Devitt, S. & Van Meter, R. Surface code quantum computing by lattice surgery. New J. Phys. 14, 123011 (2012).

    ADS 
    MathSciNet 
    Article 

    Google Scholar
     

  • 19.

    Andersen, C. K. et al. Repeated quantum error detection in a surface code. Nat. Phys. 16, 875–880 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 20.

    Gottesman, D. Stabilizer Codes and Quantum Error Correction. PhD thesis, CalTech (1997); preprint at https://arxiv.org/abs/quant-ph/9705052 (1997).

  • 21.

    Kelly, J. et al. State preservation by repetitive error detection in a superconducting quantum circuit. Nature 519, 66–69 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 22.

    Cory, D. G. et al. Experimental quantum error correction. Phys. Rev. Lett. 81, 2152 (1998).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 23.

    Knill, E., Laamme, R., Martinez, R. & Negrevergne, C. Benchmarking quantum computers: the five-qubit error correcting code. Phys. Rev. Lett. 86, 5811 (2001).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 24.

    Moussa, O., Baugh, J., Ryan, C. A. & Laamme, R. Demonstration of Sufficient control for two rounds of quantum error correction in a solid state ensemble quantum information processor. Phys. Rev. Lett. 107, 160501 (2011).

    ADS 
    Article 

    Google Scholar
     

  • 25.

    Nigg, D. et al. Quantum computations on a topologically encoded qubit. Science 345, 302–305 (2014).

    ADS 
    MathSciNet 
    CAS 
    Article 

    Google Scholar
     

  • 26.

    Egan, L. et al. Fault-tolerant operation of a quantum error-correction code. Preprint at https://arxiv.org/abs/2009.11482 (2020).

  • 27.

    Takita, M., Cross, A. W., Córcoles, A., Chow, J. M. & Gambetta, J. M. Experimental demonstration of fault-tolerant state preparation with superconducting qubits. Phys. Rev. Lett. 119, 180501 (2017).

    ADS 
    Article 

    Google Scholar
     

  • 28.

    Wootton, J. R. Benchmarking near-term devices with quantum error correction. Quantum Sci. Technol. 5, 044004 (2020).

    ADS 
    Article 

    Google Scholar
     

  • 29.

    Pino, J. et al. Demonstration of the trapped-ion quantum-CCD computer architecture. Nature 592, 209–213 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 30.

    Bravyi, S. B. & Kitaev, A. Y. Quantum codes on a lattice with boundary. Preprint at https://arxiv.org/abs/quant-ph/9811052 (1998).

  • 31.

    Dennis, E., Kitaev, A., Landahl, A. & Preskill, J. Topological quantum memory. J. Math. Phys. 43, 4452 (2002).

    ADS 
    MathSciNet 
    Article 

    Google Scholar
     

  • 32.

    Kitaev, A. Y. Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2–30 (2003).

    ADS 
    MathSciNet 
    Article 

    Google Scholar
     

  • 33.

    Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 34.

    Koch, J. et al. Charge-insensitive qubit design derived from the Cooper pair box. Phys. Rev. A 76, 042319 (2007).

    ADS 
    Article 

    Google Scholar
     

  • 35.

    McEwen, M. et al. Removing leakage-induced correlated errors in superconducting quantum error correction. Nat. Commun. 12, 1761 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 36.

    Sung, Y. et al. Realization of high-fidelity CZ and ZZ-free iSWAP gates with a tunable coupler. Preprint at https://arxiv.org/abs/2011.01261 (2020).

  • 37.

    Klimov, P. V., Kelly, J., Martinis, J. M. & Neven, H. The Snake optimizer for learning quantum processor control parameters. Preprint at https://arxiv.org/abs/2006.04594 (2020).

  • 38.

    Chen, Z. et al. Measuring and suppressing quantum state leakage in a superconducting qubit. Phys. Rev. Lett. 116, 020501 (2016).

    ADS 
    Article 

    Google Scholar
     

  • 39.

    Wood, C. J. & Gambetta, J. M. Quantification and characterization of leakage errors. Phys. Rev. A 97, 032306 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 40.

    Vepsäläinen, A. et al. Impact of ionizing radiation on superconducting qubit coherence. Nature 584, 551–556 (2020).

    ADS 
    Article 

    Google Scholar
     

  • 41.

    Wilen, C. et al. Correlated charge noise and relaxation errors in superconducting qubits. Preprint at https://arxiv.org/abs/2012.06029 (2020).

  • 42.

    Karatsu, K. et al. Mitigation of cosmic ray effect on microwave kinetic inductance detector arrays. Appl. Phys. Lett. 114, 032601 (2019).

    ADS 
    Article 

    Google Scholar
     

  • 43.

    Cardani, L. et al. Reducing the impact of radioactivity on quantum circuits in a deep-underground facility. Preprint at https://arxiv.org/abs/2005.02286 (2020).

  • 44.

    Kelly, J., O’Malley, P., Neeley, M., Neven, H. & Martinis, J. M. Physical qubit calibration on a directed acyclic graph. Preprint at https://arxiv.org/abs/1803.03226 (2018). 

  • 45.

    Cirq. https://github.com/quantumlib/Cirq (2021).

  • Source link