May 7, 2024
Floating perovskite-BiVO4 devices for scalable solar fuel production – Nature

Floating perovskite-BiVO4 devices for scalable solar fuel production – Nature

  • Kim, J. H., Hansora, D., Sharma, P., Jang, J.-W. & Lee, J. S. Toward practical solar hydrogen production – an artificial photosynthetic leaf-to-farm challenge. Chem. Soc. Rev. 48, 1908–1971 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Reece, S. Y. et al. Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts. Science 334, 645–648 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Li, Z. et al. Scalable fabrication of perovskite solar cells. Nat. Rev. Mater. 3, 18017 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Schäppi, R. et al. Drop-in fuels from sunlight and air. Nature 601, 63–68 (2022).

    ADS 
    Article 

    Google Scholar
     

  • Sokol, K. P. & Andrei, V. Automated synthesis and characterization techniques for solar fuel production. Nat. Rev. Mater. 7, 251–253 (2022).

  • Waldrop, M. M. The chips are down for Moore’s law. Nature 530, 144–147 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Yu, X. et al. Graphene-based smart materials. Nat. Rev. Mater. 2, 17046 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Kang, J., Tok, J. B.-H. & Bao, Z. Self-healing soft electronics. Nat. Electron. 2, 144–150 (2019).

    Article 

    Google Scholar
     

  • Someya, T., Bao, Z. & Malliaras, G. G. The rise of plastic bioelectronics. Nature 540, 379–385 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Andersen, T. R. et al. Scalable, ambient atmosphere roll-to-roll manufacture of encapsulated large area, flexible organic tandem solar cell modules. Energy Environ. Sci. 7, 2925–2933 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Fakharuddin, A., Jose, R., Brown, T. M., Fabregat-Santiago, F. & Bisquert, J. A perspective on the production of dye-sensitized solar modules. Energy Environ. Sci. 7, 3952–3981 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Kaltenbrunner, M. et al. Flexible high power-per-weight perovskite solar cells with chromium oxide-metal contacts for improved stability in air. Nat. Mater. 14, 1032–1039 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Chen, J., Dong, C., Idriss, H., Mohammed, O. F. & Bakr, O. M. Metal halide perovskites for solar-to-chemical fuel conversion. Adv. Energy Mater. 10, 1902433 (2019).

    Article 

    Google Scholar
     

  • Andrei, V., Reuillard, B. & Reisner, E. Bias-free solar syngas production by integrating a molecular cobalt catalyst with perovskite–BiVO4 tandems. Nat. Mater. 19, 189–194 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Zhang, H. et al. A sandwich-like organolead halide perovskite photocathode for efficient and durable photoelectrochemical hydrogen evolution in water. Adv. Energy Mater. 8, 1800795 (2018).

    Article 

    Google Scholar
     

  • Suter, S. & Haussener, S. Optimizing mesostructured silver catalysts for selective carbon dioxide conversion into fuels. Energy Environ. Sci. 12, 1668–1678 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Hall, A. S., Yoon, Y., Wuttig, A. & Surendranath, Y. Mesostructure-induced selectivity in CO2 reduction catalysis. J. Am. Chem. Soc. 137, 14834–14837 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Wang, Q., Dong, Q., Li, T., Gruverman, A. & Huang, J. Thin insulating tunneling contacts for efficient and water-resistant perovskite solar cells. Adv. Mater. 28, 6734–6739 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Crespo-Quesada, M. et al. Metal-encapsulated organolead halide perovskite photocathode for solar-driven hydrogen evolution in water. Nat. Commun. 7, 12555 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Wang, M. et al. Defect passivation using ultrathin PTAA layers for efficient and stable perovskite solar cells with a high fill factor and eliminated hysteresis. J. Mater. Chem. A 7, 26421–26428 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Jeng, J.-Y. et al. Nickel oxide electrode interlayer in CH3NH3PbI3 perovskite/PCBM planar-heterojunction hybrid solar cells. Adv. Mater. 26, 4107–4113 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Andrei, V. et al. Scalable triple cation mixed halide perovskite–BiVO4 tandems for bias-free water splitting. Adv. Energy Mater. 8, 1801403 (2018).

    Article 

    Google Scholar
     

  • Cheng, W.-H. et al. Monolithic photoelectrochemical device for direct water splitting with 19% efficiency. ACS Energy Lett. 3, 1795–1800 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Young, J. L. et al. Direct solar-to-hydrogen conversion via inverted metamorphic multi-junction semiconductor architectures. Nat. Energy 2, 17028 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Yang, W., Prabhakar, R. R., Tan, J., Tilley, S. D. & Moon, J. Strategies for enhancing the photocurrent, photovoltage, and stability of photoelectrodes for photoelectrochemical water splitting. Chem. Soc. Rev. 48, 4979–5015 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Kim, T. W. & Choi, K.-S. Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 343, 990–994 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Hankin, A. et al. From millimetres to metres: the critical role of current density distributions in photo-electrochemical reactor design. Energy Environ. Sci. 10, 346–360 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Hou, Y., Zuo, F., Dagg, A. P., Liu, J. & Feng, P. Branched WO3 nanosheet array with layered C3N4 heterojunctions and CoOx nanoparticles as a flexible photoanode for efficient photoelectrochemical water oxidation. Adv. Mater. 26, 5043–5049 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Nitopi, S. et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 119, 7610–7672 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Wang, Q. et al. Molecularly engineered photocatalyst sheet for scalable solar formate production from carbon dioxide and water. Nat. Energy 5, 703–710 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Kasap, H., Achilleos, D. S., Huang, A. & Reisner, E. Photoreforming of lignocellulose into H2 using nanoengineered carbon nitride under benign conditions. J. Am. Chem. Soc. 140, 11604–11607 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Weraduwage, S. M. et al. The relationship between leaf area growth and biomass accumulation in Arabidopsis thaliana. Front. Plant Sci. 6, 167 (2015).

    Article 

    Google Scholar
     

  • Achilleos, D. S. et al. Solar reforming of biomass with homogeneous carbon dots. Angew. Chem. Int. Ed. Engl. 59, 18184–18188 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Nishiyama, H. et al. Photocatalytic solar hydrogen production from water on a 100 m2-scale. Nature 598, 304–307 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Sahu, A., Yadav, N. & Sudhakar, K. Floating photovoltaic power plant: a review. Renew. Sustain. Energy Rev. 66, 815–824 (2016).

    Article 

    Google Scholar
     

  • Chun, K.-Y. et al. Highly conductive, printable and stretchable composite films of carbon nanotubes and silver. Nat. Nanotechnol. 5, 853–857 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • de Lima, R. L. P., Paxinou, K. C., Boogaard, F., Akkerman, O. & Lin, F.-Y. In-situ water quality observations under a large-scale floating solar farm using sensors and underwater drones. Sustainability 13, 6421 (2021).

    Article 

    Google Scholar
     

  • Liu, X. et al. 20.7% Highly reproducible inverted planar perovskite solar cells with enhanced fill factor and eliminated hysteresis. Energy Environ. Sci. 12, 1622–1633 (2019).

    Article 

    Google Scholar
     

  • Gorham, W. F. A new, general synthetic method for the preparation of linear poly-p-xylylenes. J. Polym. Sci. A1 4, 3027–3039 (1966).

    CAS 
    Article 

    Google Scholar
     

  • Lu, H. et al. Single-source bismuth (transition metal) polyoxovanadate precursors for the scalable synthesis of doped BiVO4 photoanodes. Adv. Mater. 30, 1804033 (2018).

    Article 

    Google Scholar
     

  • Andrei, V. et al. Dataset for ‘Floating perovskite-BiVO4 devices for scalable solar fuel production’. Apollo Repository, University of Cambridge https://doi.org/10.17863/CAM.82770 (2022).

  • Source link