May 18, 2024
Frequent disturbances enhanced the resilience of past human populations – Nature

Frequent disturbances enhanced the resilience of past human populations – Nature

  • Cumming, G. S. & Peterson, G. D. Unifying research on social–ecological resilience and collapse. Trends Ecol. Evol. 32, 695–713 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Haldon, J. et al. History meets palaeoscience: consilience and collaboration in studying past societal responses to environmental change. Proc. Natl Acad. Sci. USA 115, 3210–3218 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • IPBES Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Zenodo https://doi.org/10.5281/zenodo.3831673 (2019).

  • Bradtmöller, M., Grimm, S. & Riel-Salvatore, J. Resilience theory in archaeological practice–an annotated review. Quat. Int. 446, 3–16 (2017).

    Article 

    Google Scholar
     

  • Silva, F. et al. Developing transdisciplinary approaches to sustainability challenges: the need to model socio-environmental systems in the longue durée. Sustainability 14, 10234 (2022).

    Article 

    Google Scholar
     

  • Degroot, D. et al. Towards a rigorous understanding of societal responses to climate change. Nature 591, 539–550 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Broska, L. H., Poganietz, W. R. & Vögele, S. Extreme events defined—a conceptual discussion applying a complex systems approach. Futures 1, 102490 (2020).

    Article 

    Google Scholar
     

  • Pausas, J. G. & Leverkus, A. B. Disturbance ecology in human societies. People Nat. 5, 1082–1093 (2023).

    Article 

    Google Scholar
     

  • Middleton, G. D. The show must go on: collapse, resilience, and transformation in 21st-century archaeology. Rev. Anthropol. 46, 78–105 (2017).

    Article 

    Google Scholar
     

  • Jackson, R. C., Dugmore, A. J. & Riede, F. Rediscovering lessons of adaptation from the past. Glob. Environ. Change 52, 58–65 (2018).

    Article 

    Google Scholar
     

  • Van Meerbeek, K., Jucker, T. & Svenning, J. C. Unifying the concepts of stability and resilience in ecology. J. Ecol. 109, 3114–3132 (2021).

    Article 

    Google Scholar
     

  • Riris, P. & De Souza, J. G. Formal tests for resistance-resilience in archaeological time series. Front. Ecol. Evol. 9, 740629 (2021).

    Article 

    Google Scholar
     

  • Shennan, S. et al. Regional population collapse followed initial agriculture booms in mid-Holocene Europe. Nat. Commun. 4, 2486 (2013).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Bevan, A. et al. Holocene fluctuations in human population demonstrate repeated links to food production and climate. Proc. Natl Acad. Sci. USA 114, E10524–E10531 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Freeman, J., Mauldin, R. P., Whisenhunt, M., Hard, R. J. & Anderies, J. M. Repeated long-term population growth overshoots and recessions among hunter-gatherers. The Holocene 7, 09596836231183072 (2023).


    Google Scholar
     

  • Freeman, J., Byers, D. A., Robinson, E. & Kelly, R. L. Culture process and the interpretation of radiocarbon data. Radiocarbon 60, 453–467 (2018).

    Article 

    Google Scholar
     

  • Crema, E. R. & Bevan, A. Inference from large sets of radiocarbon dates: software and methods. Radiocarbon 63, 23–39 (2021).

    Article 

    Google Scholar
     

  • Schauer, P. et al. Supply and demand in prehistory? Economics of Neolithic mining in northwest Europe. J. Anthropol. Archaeol. 54, 149–160 (2019).

    Article 

    Google Scholar
     

  • Bird, D. et al. p3k14c, a synthetic global database of archaeological radiocarbon dates. Sci. Data. 27, 27 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Palmisano, A., Lawrence, D., de Gruchy, M. W., Bevan, A. & Shennan, S. Holocene regional population dynamics and climatic trends in the Near East: a first comparison using archaeo-demographic proxies. Quat. Sci. Rev. 252, 106739 (2021).

    Article 

    Google Scholar
     

  • Koch, A., Brierley, C., Maslin, M. M. & Lewis, S. L. Earth system impacts of the European arrival and Great Dying in the Americas after 1492. Quat. Sci. Rev. 207, 13–36 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Storey, R. & Storey, G. R. Rome and the Classic Maya: Comparing the Slow Collapse of Civilizations (Routledge, 2017).

  • Finley, J. B., Robinson, E., DeRose, R. J. & Hora, E. Multidecadal climate variability and the florescence of Fremont societies in Eastern Utah. Am. Antiq. 85, 93–112 (2020).

    Article 

    Google Scholar
     

  • Freeman, J. et al. Landscape engineering impacts the long-term stability of agricultural populations. Hum. Ecol. 49, 369–382 (2021).

    Article 

    Google Scholar
     

  • Boivin, N. & Crowther, A. Mobilizing the past to shape a better Anthropocene. Nat. Ecol. Evol. 5, 273–284 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Burke, A. et al. The archaeology of climate change: the case for cultural diversity. Proc. Natl Acad. Sci. USA 118, e2108537118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seidl, R., Rammer, W. & Spies, T. A. Disturbance legacies increase the resilience of forest ecosystem structure, composition, and functioning. Ecol. Appl. 24, 2063–2077 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zahid, H. J., Robinson, E. & Kelly, R. L. Agriculture, population growth, and statistical analysis of the radiocarbon record. Proc. Natl Acad. Sci. USA 113, 931–935 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Shennan, S. & Sear, R. Archaeology, demography and life history theory together can help us explain past and present population patterns. Philos. Trans. R. Soc. Lond. B 376, 20190711 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Rockman, M. in Macroevolution in Human Prehistory: Evolutionary Theory and Processual Archaeology (eds Prentiss, A., Kuijit, I. & Chatters, J. C.) 51–71 (Springer, 2009).

  • Galan, J. et al. Landscape adaptation to climate change: local networks, social learning and co-creation processes for adaptive planning. Glob. Environ. Change 78, 102627 (2023).

    Article 

    Google Scholar
     

  • De Souza, J. G. et al. Climate change and cultural resilience in late pre-Columbian Amazonia. Nat. Ecol. Evol. 3, 1007–1017 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Cole, L. E., Bhagwat, S. A. & Willis, K. J. Recovery and resilience of tropical forests after disturbance. Nat. Commun. 20, 3906 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Cant, J., Capdevila, P., Beger, M. & Salguero‐Gómez, R. Recent exposure to environmental stochasticity does not determine the demographic resilience of natural populations. Ecol. Lett. 26, 1186–1199 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Redman, C. L. Resilience theory in archaeology. Am. Anthropol. 107, 70–77 (2005).

    Article 

    Google Scholar
     

  • French, J. C., Riris, P., Fernandez-Lopez de Pablo, J., Lozano, S. & Silva, F. A manifesto for palaeodemography in the twenty-first century. Philos. Trans. R. Soc. Lond. B 376, 20190707 (2021).

    Article 

    Google Scholar
     

  • Freeman, J. et al. The long-term expansion and recession of human populations. Proc. Natl Acad. Sci. USA 121, e2312207121 (2024).

  • Allen, K. J. et al. Coupled insights from the palaeoenvironmental, historical and archaeological archives to support social-ecological resilience and the sustainable development goals. Environ. Res. Lett. 17, 055011 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Schug, G. R. et al. Climate change, human health, and resilience in the Holocene. Proc. Natl Acad. Sci. USA 120, e2209472120 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Wisner, B. G., Blaikie, P., Cannon, T. & Davis, I. At Risk: Natural Hazards, People’s Vulnerability and Disasters (Routledge, 2014).

  • Thornton, P. K., Ericksen, P. J., Herrero, M. & Challinor, A. J. Climate variability and vulnerability to climate change: a review. Glob. Change Biol. 20, 3313–3328 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Gao, C. et al. Volcanic climate impacts can act as ultimate and proximate causes of Chinese dynastic collapse. Commun. Earth Environ. 2, 234 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Douglas, P. M., Demarest, A. A., Brenner, M. & Canuto, M. A. Impacts of climate change on the collapse of lowland Maya civilization. Annu. Rev. Earth Planet Sci. 44, 613–645 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Reimer, P. J. et al. The IntCal20 northern hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62, 725–757 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Hogg, A. G. et al. SHCal20 southern hemisphere calibration, 0–55,000 years cal BP. Radiocarbon 62, 759–778 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Crema, E. R. nimbleCarbon (v.0.2.1): models and utility functions for Bayesian analyses of radiocarbon dates with NIMBLE. GitHub https://github.com/ercrema/nimbleCarbon (2022).

  • Carleton, W. C. Evaluating Bayesian radiocarbon‐dated event count (REC) models for the study of long‐term human and environmental processes. J. Quat. Sci. 36, 110–123 (2021).

    Article 

    Google Scholar
     

  • Timpson, A., Barberena, R., Thomas, M. G., Méndez, C. & Manning, K. Directly modelling population dynamics in the South American Arid Diagonal using 14C dates. Philos. Trans. R. Soc. Lond. B 376, 20190723 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Crema, E. R. Statistical inference of prehistoric demography from frequency distributions of radiocarbon dates: a review and a guide for the perplexed. J. Archaeol. Method Theory 29, 1387–1418 (2022).

    Article 

    Google Scholar
     

  • Riris, P. Data and scripts for the paper ‘Frequent disturbances enhance the resistance and recovery of past human populations’. Zenodo https://doi.org/10.5281/zenodo.10061467 (2023).

  • Orwin, K. H. & Wardle, D. A. New indices for quantifying the resistance and resilience of soil biota to exogenous disturbances. Soil Biol. Biochem. 36, 1907–1912 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Article 

    Google Scholar
     

  • Säfken, B., Rügamer, D., Kneib, T. & Greven, S. Conditional model selection in mixed-effects models with cAIC4. J. Stat. Softw. 99, 1–30 (2021).

    Article 

    Google Scholar
     

  • Source link