May 4, 2024
From target discovery to clinical drug development with human genetics – Nature

From target discovery to clinical drug development with human genetics – Nature

  • Arrowsmith, J. & Miller, P. Trial watch: phase II and phase III attrition rates 2011-2012. Nat. Rev. Drug Discov. 12, 569 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Harrison, R. K. Phase II and phase III failures: 2013-2015. Nat. Rev. Drug Discov. 15, 817–818 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wouters, O. J., McKee, M. & Luyten, J. Estimated research and development investment needed to bring a new medicine to market, 2009-2018. JAMA 323, 844–853 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cook, D. et al. Lessons learned from the fate of AstraZeneca’s drug pipeline: a five-dimensional framework. Nat. Rev. Drug Discov. 13, 419–431 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Razuvayevskaya, O., Lopez, I., Dunham, I. & Ochoa, D. Why clinical trials stop: the role of genetics. Preprint at medRxiv https://doi.org/10.1101/2023.02.07.23285407 (2023).

  • Collins, F. S. Shattuck lecture—Medical and societal consequences of the Human Genome Project. N. Engl. J. Med. 341, 28–37 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Venter, J. C. et al. The sequence of the human genome. Science 291, 1304–1351 (2001).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Spotlight on cancer genomics. Nat. Cancer 1, 265–266 (2020).

  • Nguengang Wakap, S. et al. Estimating cumulative point prevalence of rare diseases: analysis of the Orphanet database. Eur. J. Hum. Genet. 28, 165–173 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Abdellaoui, A., Yengo, L., Verweij, K. J. H. & Visscher, P. M. 15 years of GWAS discovery: realizing the promise. Am. J. Hum. Genet. 110, 179–194 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Malone, E. R., Oliva, M., Sabatini, P. J. B., Stockley, T. L. & Siu, L. L. Molecular profiling for precision cancer therapies. Genome Med. 12, 8 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Waarts, M. R., Stonestrom, A. J., Park, Y. C. & Levine, R. L. Targeting mutations in cancer. J. Clin. Invest. 132, e154943 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sabatine, M. S. et al. Efficacy and safety of evolocumab in reducing lipids and cardiovascular events. N. Engl. J. Med. 372, 1500–1509 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hall, S. S. Genetics: a gene of rare effect. Nature 496, 152–155 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Abifadel, M. et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat. Genet. 34, 154–156 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, Z. et al. Molecular characterization of loss-of-function mutations in PCSK9 and identification of a compound heterozygote. Am. J. Hum. Genet. 79, 514–523 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cohen, J. C., Boerwinkle, E., Mosley, T. H. Jr. & Hobbs, H. H. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N. Engl. J. Med. 354, 1264–1272 (2006). To our knowledge, refs. 16–18 provided the first genetic rationale for the discovery and development of PCKS9 inhibitors as a safe way to treat familial hypercholesterolemia and coronary artery disease.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Raedler, L. A. Praluent (alirocumab): first PCSK9 inhibitor approved by the FDA for hypercholesterolemia. Am. Health Drug Benefits 9, 123–126 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • King, E. A., Davis, J. W. & Degner, J. F. Are drug targets with genetic support twice as likely to be approved? Revised estimates of the impact of genetic support for drug mechanisms on the probability of drug approval. PLoS Genet. 15, e1008489 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nelson, M. R. et al. The support of human genetic evidence for approved drug indications. Nat. Genet. 47, 856–860 (2015). References 20,21  demonstrated retrospectively that genetically supported targets are more likely to lead to approved therapies.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ochoa, D. et al. Human genetics evidence supports two-thirds of the 2021 FDA-approved drugs. Nat. Rev. Drug Discov. 21, 551 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Seidah, N. G. The PCSK9 revolution and the potential of PCSK9-based therapies to reduce LDL-cholesterol. Glob. Cardiol. Sci. Pract. 2017, e201702 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ochoa, D. et al. The next-generation Open Targets Platform: reimagined, redesigned, rebuilt. Nucleic Acids Res. 51, D1353–D1359 (2022).

    Article 
    PubMed Central 

    Google Scholar
     

  • Wishart, D. S. et al. DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res. 34, D668–672 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sparrow, A. J., Watkins, H., Daniels, M. J., Redwood, C. & Robinson, P. Mavacamten rescues increased myofilament calcium sensitivity and dysregulation of Ca2+ flux caused by thin filament hypertrophic cardiomyopathy mutations. Am. J. Physiol. Heart. Circ. Physiol. 318, H715–h722 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Watkins, H., Ashrafian, H. & Redwood, C. Inherited cardiomyopathies. N. Engl. J. Med. 364, 1643–1656 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Toepfer, C. N. et al. Myosin sequestration regulates sarcomere function, cardiomyocyte energetics, and metabolism, informing the pathogenesis of hypertrophic cardiomyopathy. Circulation 141, 828–842 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Santos, R. et al. A comprehensive map of molecular drug targets. Nat. Rev. Drug Discov. 16, 19–34 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brinkman, R. R., Dube, M. P., Rouleau, G. A., Orr, A. C. & Samuels, M. E. Human monogenic disorders—a source of novel drug targets. Nat. Rev. Genet. 7, 249–260 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Desnick, R. J. & Schuchman, E. H. Enzyme replacement therapy for lysosomal diseases: lessons from 20 years of experience and remaining challenges. Annu. Rev. Genomics Hum. Genet. 13, 307–335 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, H. et al. Nanomolar affinity small molecule correctors of defective Delta F508-CFTR chloride channel gating. J. Biol. Chem. 278, 35079–35085 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Van Goor, F. et al. Rescue of CF airway epithelial cell function in vitro by a CFTR potentiator, VX-770. Proc. Natl Acad. Sci. USA 106, 18825–18830 (2009).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • RNAi therapeutics market: growing investments in RNAi therapies. BioSpace https://www.biospace.com/article/rnai-therapeutics-market-growing-investments-in-rnai-therapies/ (2021).

  • Kim, J. et al. Patient-customized oligonucleotide therapy for a rare genetic disease. N. Engl. J. Med. 381, 1644–1652 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • European Medicines Agency recommends first gene therapy for approval. European Medicines Agency https://www.ema.europa.eu/en/news/european-medicines-agency-recommends-first-gene-therapy-approval (2012).

  • Ribeil, J. A. et al. Gene therapy in a patient with sickle cell disease. N. Engl. J. Med. 376, 848–855 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Esrick, E. B. et al. Post-transcriptional genetic silencing of BCL11A to treat sickle cell disease. N. Engl. J. Med. 384, 205–215 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thompson, A. A. et al. Gene therapy in patients with transfusion-dependent beta-thalassemia. N. Engl. J. Med. 378, 1479–1493 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, H. et al. Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects. Signal Transduct. Target. Ther. 5, 1 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Frangoul, H. et al. CRISPR–Cas9 gene editing for sickle cell disease and beta-thalassemia. N. Engl. J. Med. 384, 252–260 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dean, M. et al. Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Hemophilia Growth and Development Study, Multicenter AIDS Cohort Study, Multicenter Hemophilia Cohort Study, San Francisco City Cohort, ALIVE Study. Science 273, 1856–1862 (1996).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Samson, M. et al. Resistance to HIV-1 infection in Caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature 382, 722–725 (1996).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • FDA approves maraviroc tablets. AIDS Patient Care STDs 21, 702 (2007).

  • Piters, E. et al. First missense mutation in the SOST gene causing sclerosteosis by loss of sclerostin function. Hum. Mutat. 31, E1526–E1543 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Balemans, W. et al. Identification of a 52 kb deletion downstream of the SOST gene in patients with van Buchem disease. J. Med. Genet. 39, 91–97 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Musunuru, K. et al. Exome sequencing, ANGPTL3 mutations, and familial combined hypolipidemia. N. Engl. J. Med. 363, 2220–2227 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martin-Campos, J. M. et al. Identification of a novel mutation in the ANGPTL3 gene in two families diagnosed of familial hypobetalipoproteinemia without APOB mutation. Clin. Chim. Acta 413, 552–555 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Romeo, S. et al. Rare loss-of-function mutations in ANGPTL family members contribute to plasma triglyceride levels in humans. J. Clin. Invest. 119, 70–79 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • Mullard, A. FDA approves first anti-ANGPTL3 antibody, for rare cardiovascular indication. Nat. Rev. Drug Discov. 20, 251 (2021).

    PubMed 

    Google Scholar
     

  • Banerjee, Y. et al. Inclisiran: a small interfering RNA strategy targeting PCSK9 to treat hypercholesterolemia. Expert Opin. Drug Saf. 21, 9–20 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, L. et al. Long-term stable reduction of low-density lipoprotein in nonhuman primates following in vivo genome editing of PCSK9. Mol. Ther. 29, 2019–2029 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Musunuru, K. et al. In vivo CRISPR base editing of PCSK9 durably lowers cholesterol in primates. Nature 593, 429–434 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Reyes-Soffer, G. et al. Lipoprotein(a): a genetically determined, causal, and prevalent risk factor for atherosclerotic cardiovascular disease: a scientific statement from the American Heart Association. Arterioscler. Thromb. Vasc. Biol. 42, e48–e60 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tsimikas, S. et al. Lipoprotein(a) reduction in persons with cardiovascular disease. N. Engl. J. Med. 382, 244–255 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yeang, C. et al. Effect of pelacarsen on lipoprotein(a) cholesterol and corrected low-density lipoprotein cholesterol. J. Am. Coll. Cardiol. 79, 1035–1046 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Koren, M. J. et al. Preclinical development and phase 1 trial of a novel siRNA targeting lipoprotein(a). Nat. Med. 28, 96–103 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mendonca, B. B. et al. Steroid 5α-reductase 2 deficiency. J. Steroid Biochem. Mol. Biol. 163, 206–211 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gormley, G. J. et al. The effect of finasteride in men with benign prostatic hyperplasia. The Finasteride Study Group. N. Engl. J. Med. 327, 1185–1191 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kaufman, K. D. et al. Finasteride in the treatment of men with androgenetic alopecia. Finasteride Male Pattern Hair Loss Study Group. J. Am. Acad. Dermatol. 39, 578–589 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rafiq, M. et al. Effective treatment with oral sulfonylureas in patients with diabetes due to sulfonylurea receptor 1 (SUR1) mutations. Diabetes Care 31, 204–209 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Savarirayan, R. et al. Infigratinib in children with achondroplasia: the PROPEL and PROPEL 2 studies. Ther. Adv. Musculoskelet. Dis. 14, 1759720×221084848 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Duerr, R. H. et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 314, 1461–1463 (2006).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wellcome Trust Case Control Consortium. Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variants. Nat. Genet. 39, 1329–1337 (2007).

    Article 

    Google Scholar
     

  • Mokry, L. E. et al. Interleukin-18 as a drug repositioning opportunity for inflammatory bowel disease: a Mendelian randomization study. Sci. Rep. 9, 9386 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Niemi, M. E. K. et al. Mapping the human genetic architecture of COVID-19. Nature 600, 472–477 (2021).

    Article 
    CAS 

    Google Scholar
     

  • RECOVERY Collaborative Group. Baricitinib in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial and updated meta-analysis. Lancet 400, 1102 (2022).


    Google Scholar
     

  • Tishkoff, S. A. & Verrelli, B. C. Patterns of human genetic diversity: implications for human evolutionary history and disease. Annu. Rev. Genomics Hum. Genet. 4, 293–340 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Slatkin, M. A population-genetic test of founder effects and implications for Ashkenazi Jewish diseases. Am. J. Hum. Genet. 75, 282–293 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de la Chapelle, A. Disease gene mapping in isolated human populations: the example of Finland. J. Med. Genet. 30, 857–865 (1993).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kurki, M. I. et al. FinnGen provides genetic insights from a well-phenotyped isolated population. Nature 613, 508–518 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moises, H. W. et al. An international two-stage genome-wide search for schizophrenia susceptibility genes. Nat. Genet. 11, 321–324 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Spedicati, B. et al. Natural human knockouts and Mendelian disorders: deep phenotyping in Italian isolates. Eur. J. Hum. Genet. 29, 1272–1281 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baskovich, B. et al. Expanded genetic screening panel for the Ashkenazi Jewish population. Genet. Med. 18, 522–528 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Bherer, C. et al. Admixed ancestry and stratification of Quebec regional populations. Am. J. Phys. Anthropol. 144, 432–441 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Laberge, A. M. et al. Population history and its impact on medical genetics in Quebec. Clin. Genet. 68, 287–301 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Locke, A. E. et al. Exome sequencing of Finnish isolates enhances rare-variant association power. Nature 572, 323–328 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Erzurumluoglu, A. M., Shihab, H. A., Rodriguez, S., Gaunt, T. R. & Day, I. N. Importance of genetic studies in consanguineous populations for the characterization of novel human gene functions. Ann. Hum. Genet. 80, 187–196 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Minikel, E. V. et al. Evaluating drug targets through human loss-of-function genetic variation. Nature 581, 459–464 (2020). This analysis provides a comprehensive roadmap for human knockout studies to discover relevant loss-of-function variants that can guide drug discovery and development.

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saleheen, D. et al. Human knockouts and phenotypic analysis in a cohort with a high rate of consanguinity. Nature 544, 235–239 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu, T. et al. Individuals with common diseases but with a low polygenic risk score could be prioritized for rare variant screening. Genet. Med. 23, 508–515 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, H. et al. Polygenic risk score for low-density lipoprotein cholesterol is associated with risk of ischemic heart disease and enriches for individuals with familial hypercholesterolemia. Circ. Genom. Precis. Med. 14, e003106 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Pfizer and Ionis announce discontinuation of vupanorsen clinical development program. CISION https://www.prnewswire.com/news-releases/pfizer-and-ionis-announce-discontinuation-of-vupanorsen-clinical-development-program-301471041.html (2022).

  • Kingwell, K. Double setback for ASO trials in Huntington disease. Nat. Rev. Drug Discov. 20, 412–413 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Romeo, S. et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat. Genet. 40, 1461–1465 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yuan, X. et al. Population-based genome-wide association studies reveal six loci influencing plasma levels of liver enzymes. Am. J. Hum. Genet. 83, 520–528 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Davey Smith, G. & Hemani, G. Mendelian randomization: genetic anchors for causal inference in epidemiological studies. Hum. Mol. Genet. 23, R89–98 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gill, D. et al. Mendelian randomization for studying the effects of perturbing drug targets. Wellcome Open Res. 6, 16 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ference, B. A. Mendelian randomization studies: using naturally randomized genetic data to fill evidence gaps. Curr. Opin. Lipidol. 26, 566–571 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schmidt, A. F. et al. Genetic drug target validation using Mendelian randomisation. Nat. Commun. 11, 3255 (2020). This study provides an analytical framework on how to utilize Mendelian randomization for drug target validation.

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng, J. et al. Phenome-wide Mendelian randomization mapping the influence of the plasma proteome on complex diseases. Nat. Genet. 52, 1122–1131 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ferkingstad, E. et al. Large-scale integration of the plasma proteome with genetics and disease. Nat. Genet. 53, 1712–1721 (2021). This article depicts in great depth the largest genome-wide association studies of plasma protein levels to date and describes 938 genes encoding potential drug targets with variants that influence levels of protein biomarkers.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Miller, C. L. et al. Integrative functional genomics identifies regulatory mechanisms at coronary artery disease loci. Nat. Commun. 7, 12092 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ganesan, A., Arimondo, P. B., Rots, M. G., Jeronimo, C. & Berdasco, M. The timeline of epigenetic drug discovery: from reality to dreams. Clin. Epigenetics 11, 174 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Steinberg, J. et al. Integrative epigenomics, transcriptomics and proteomics of patient chondrocytes reveal genes and pathways involved in osteoarthritis. Sci. Rep. 7, 8935 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Spreafico, R., Soriaga, L. B., Grosse, J., Virgin, H. W. & Telenti, A. Advances in genomics for drug development. Genes 11, 942 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, S. et al. A Neanderthal OAS1 isoform protects individuals of European ancestry against COVID-19 susceptibility and severity. Nat. Med. 27, 659–667 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yoshiji, S. et al. Proteome-wide Mendelian randomization implicates nephronectin as an actionable mediator of the effect of obesity on COVID-19 severity. Nat. Metab. 5, 248–264 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carss, K. J. et al. Using human genetics to improve safety assessment of therapeutics. Nat. Rev. Drug Discov. 22, 145–162 (2023). This review discusses how genetics can be used to anticipate potential safety issues associated with a particular drug target and to de-risk clinical development.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Diogo, D. et al. TYK2 protein-coding variants protect against rheumatoid arthritis and autoimmunity, with no evidence of major pleiotropic effects on non-autoimmune complex traits. PLoS ONE 10, e0122271 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marx, V. The DNA of a nation. Nature 524, 503–505 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 100,000 Genomes Project Pilot Investigators. 100,000 Genomes Pilot on Rare-Disease Diagnosis in Health Care—preliminary report. N. Engl. J. Med. 385, 1868–1880 (2021).

    Article 

    Google Scholar
     

  • Turnbull, C. Introducing whole-genome sequencing into routine cancer care: the Genomics England 100,000 Genomes Project. Ann. Oncol. 29, 784–787 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kousathanas, A. et al. Whole-genome sequencing reveals host factors underlying critical COVID-19. Nature 607, 97–103 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562, 203–209 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sankar, P. L. & Parker, L. S. The Precision Medicine Initiative’s All of Us research program: an agenda for research on its ethical, legal, and social issues. Genet. Med. 19, 743–750 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Gudbjartsson, D. F. et al. Large-scale whole-genome sequencing of the Icelandic population. Nat. Genet. 47, 435–444 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sakaue, S. et al. A cross-population atlas of genetic associations for 220 human phenotypes. Nat. Genet. 53, 1415–1424 (2021). This study provides an atlas of up to 220 genotype–phenotype associations in non-Europeans that enriches the field with data from diverse populations.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nagai, A. et al. Overview of the BioBank Japan Project: study design and profile. J. Epidemiol. 27, S2–s8 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leitsalu, L. et al. Cohort profile: Estonian Biobank of the Estonian Genome Center, University of Tartu. Int. J. Epidemiol. 44, 1137–1147 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Gharahkhani, P. et al. Genome-wide meta-analysis identifies 127 open-angle glaucoma loci with consistent effect across ancestries. Nat. Commun. 12, 1258 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tanigawa, Y. et al. Rare protein-altering variants in ANGPTL7 lower intraocular pressure and protect against glaucoma. PLoS Genet. 16, e1008682 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • & Akbari, P. et al. Sequencing of 640,000 exomes identifies GPR75 variants associated with protection from obesity. Science 373, eab8683 (2021). This publication reports the discovery of loss-of-function variants in GPR75 and protection from obesity.

    Article 

    Google Scholar
     

  • Regeneron Genetics Center discovers GPR75 gene mutations that protect against obesity. Regeneron https://investor.regeneron.com/news-releases/news-release-details/regeneron-genetics-center-discovers-gpr75-gene-mutations-protect (2021).

  • Abul-Husn, N. S. et al. A protein-truncating HSD17B13 variant and protection from chronic liver disease. N. Engl. J. Med. 378, 1096–1106 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sirugo, G., Williams, S. M. & Tishkoff, S. A. The missing diversity in human genetic studies. Cell 177, 26–31 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martin, A. R. et al. Clinical use of current polygenic risk scores may exacerbate health disparities. Nat. Genet. 51, 584–591 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ramamoorthy, A., Pacanowski, M. A., Bull, J. & Zhang, L. Racial/ethnic differences in drug disposition and response: review of recently approved drugs. Clin. Pharmacol. Ther. 97, 263–273 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gurdasani, D., Barroso, I., Zeggini, E. & Sandhu, M. S. Genomics of disease risk in globally diverse populations. Nat. Rev. Genet. 20, 520–535 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fatumo, S. et al. A roadmap to increase diversity in genomic studies. Nat. Med. 28, 243–250 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Popejoy, A. B. & Fullerton, S. M. Genomics is failing on diversity. Nature 538, 161–164 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bien, S. A. et al. The future of genomic studies must be globally representative: perspectives from PAGE. Annu. Rev. Genomics Hum. Genet. 20, 181–200 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wonkam, A. Sequence three million genomes across Africa. Nature 590, 209–211 (2021). This commentary discusses the research benefits of analysing Africa’s genetic variation andsets up a framework to sequence three million African genomes.

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • H3Africa Consortium. Research capacity. Enabling the genomic revolution in Africa. Science 344, 1346–1348 (2014).

    Article 

    Google Scholar
     

  • Choudhury, A. et al. High-depth African genomes inform human migration and health. Nature 586, 741–748 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wade, K. H. et al. Assessing the causal role of body mass index on cardiovascular health in young adults: Mendelian randomization and recall-by-genotype analyses. Circulation 138, 2187–2201 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Corbin, L. J. et al. Metabolic characterisation of disturbances in the APOC3/triglyceride-rich lipoprotein pathway through sample-based recall by genotype. Metabolomics 16, 69 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hellmich, C. et al. Genetics, sleep and memory: a recall-by-genotype study of ZNF804A variants and sleep neurophysiology. BMC Med. Genet. 16, 96 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alver, M. et al. Recall by genotype and cascade screening for familial hypercholesterolemia in a population-based biobank from Estonia. Genet. Med. 21, 1173–1180 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mascalzoni, D. et al. Balancing scientific interests and the rights of participants in designing a recall by genotype study. Eur. J. Hum. Genet. 29, 1146–1157 (2021). This article describes the best practices and policies for recall-by-genotype studies.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tremblay, K. et al. The Biobanque quebecoise de la COVID-19 (BQC19)-A cohort to prospectively study the clinical and biological determinants of COVID-19 clinical trajectories. PLoS ONE 16, e0245031 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mooser, V. & Currat, C. The Lausanne Institutional Biobank: a new resource to catalyse research in personalised medicine and pharmaceutical sciences. Swiss Med. Wkly 144, w14033 (2014).

    PubMed 

    Google Scholar
     

  • Maurer, F. et al. Identification and molecular characterisation of Lausanne Institutional Biobank participants with familial hypercholesterolaemia—a proof-of-concept study. Swiss Med. Wkly 146, w14326 (2016).

    PubMed 

    Google Scholar
     

  • Bochud, M., Currat, C., Chapatte, L., Roth, C. & Mooser, V. High participation rate among 25,721 patients with broad age range in a hospital-based research project involving whole-genome sequencing—the Lausanne Institutional Biobank. Swiss Med. Wkly 147, w14528 (2017).

    PubMed 

    Google Scholar
     

  • Mabuchi, H. et al. Effect of an inhibitor of 3-hydroxy-3-methyglutaryl coenzyme A reductase on serum lipoproteins and ubiquinone-10-levels in patients with familial hypercholesterolemia. N. Engl. J. Med. 305, 478–482 (1981).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ramsey, B. W. et al. A CFTR potentiator in patients with cystic fibrosis and the G551D mutation. N. Engl. J. Med. 365, 1663–1672 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chapman, P. B. et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N. Engl. J. Med. 364, 2507–2516 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mead, S. et al. Clinical trial simulations based on genetic stratification and the natural history of a functional outcome measure in Creutzfeldt–Jakob disease. JAMA Neurol. 73, 447–455 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Bokhoven, P. et al. The Alzheimer’s disease drug development landscape. Alzheimers Res. Ther. 13, 186 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lopes Alves, I. et al. Strategies to reduce sample sizes in Alzheimer’s disease primary and secondary prevention trials using longitudinal amyloid PET imaging. Alzheimers Res. Ther. 13, 82 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fahed, A. C., Philippakis, A. A. & Khera, A. V. The potential of polygenic scores to improve cost and efficiency of clinical trials. Nat. Commun. 13, 2922 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Damask, A. et al. Patients with high genome-wide polygenic risk scores for coronary artery disease may receive greater clinical benefit from alirocumab treatment in the ODYSSEY OUTCOMES trial. Circulation 141, 624–636 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Marston, N. A. et al. Predicting benefit from evolocumab therapy in patients with atherosclerotic disease using a genetic risk score: results from the FOURIER trial. Circulation 141, 616–623 (2020). These two independent articles (refs. 142,143) show that patients with a high polygenic risk score for coronary artery disease benefit most from PCSK9 inhibition, suggesting that the selection of participants based on their genomic profile may be useful in early trials.

    Article 
    PubMed 

    Google Scholar
     

  • Roden, D. M. et al. Benefit of preemptive pharmacogenetic information on clinical outcome. Clin. Pharmacol. Ther. 103, 787–794 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Petrović, J., Pešić, V. & Lauschke, V. M. Frequencies of clinically important CYP2C19 and CYP2D6 alleles are graded across Europe. Eur J Hum Genet 28, 88–94 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • US Department of Health and Human Services et al. Clinical Pharmacogenomics: Premarket Evaluation in Early-Phase Clinical Studies and Recommendations for Labeling https://www.fda.gov/files/drugs/published/Clinical-Pharmacogenomics–Premarket-Evaluation-in-Early-Phase-Clinical-Studies-and-Recommendations-for-Labeling.pdf (FDA, 2013).

  • Government Chief Scientific Adviser. Genomics Beyond Health https://www.gov.uk/government/publications/genomics-beyond-health (Government Office for Science, 2022).

  • Source link