May 28, 2024
Galaxies in voids assemble their stars slowly – Nature

Galaxies in voids assemble their stars slowly – Nature

  • Peebles, P. J. E. The void phenomenon. Astrophys. J. 557, 495–504 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Kreckel, K. et al. Only the lonely: H I imaging of void galaxies. Astron. J. 141, 4 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Pan, D. C., Vogeley, M. S., Hoyle, F., Choi, Y.-Y. & Park, C. Cosmic voids in Sloan Digital Sky Survey data release 7. Mon. Not. R. Astron. Soc. 421, 926–934 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Varela, J., Betancort-Rijo, J., Trujillo, I. & Ricciardelli, E. The orientation of disk galaxies around large cosmic voids. Astrophys. J. 744, 82 (2012).

    Article 
    ADS 

    Google Scholar
     

  • van de Weygaert, R. Voids and the cosmic web: cosmic depression & spatial complexity. In Proc. of the International Astronomical Union, Vol. 308 (eds van de Weygaert, R., Shandarin, S., Saar, E. & Einasto, J.) 493–523 (Cambridge Univ. Press, 2016).

  • Rojas, R. R., Vogeley, M. S., Hoyle, F. & Brinkmann, J. Photometric properties of void galaxies in the Sloan Digital Sky Survey. Astrophys. J. 617, 50–63 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Rojas, R. R., Vogeley, M. S., Hoyle, F. & Brinkmann, J. Spectroscopic properties of void galaxies in the Sloan Digital Sky Survey. Astrophys. J. 624, 571–585 (2005).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Patiri, S. G., Prada, F., Holtzman, J., Klypin, A. & Betancort-Rijo, J. The properties of galaxies in voids. Mon. Not. R. Astron. Soc. 372, 1710–1720 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Park, C. et al. Environmental dependence of properties of galaxies in the Sloan Digital Sky Survey. Astrophys. J. 658, 898–916 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Hoyle, F., Vogeley, M. S. & Pan, D. Photometric properties of void galaxies in the Sloan Digital Sky Survey data release 7. Mon. Not. R. Astron. Soc. 426, 3041–3050 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Kreckel, K. et al. The Void Galaxy Survey: optical properties and H I morphology and kinematics. Astron. J. 144, 16 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Ricciardelli, E., Cava, A., Varela, J. & Quilis, V. The star formation activity in cosmic voids. Mon. Not. R. Astron. Soc. 445, 4045–4054 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Beygu, B. et al. The Void Galaxy Survey: star formation properties. Mon. Not. R. Astron. Soc. 458, 394–409 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Florez, J. et al. Void galaxies follow a distinct evolutionary path in the Environmental COntext Catalog. Astrophys. J. 906, 97 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Szomoru, A., van Gorkom, J. H., Gregg, M. D. & Strauss, M. A. An HI survey of the Bootes void. II. The analysis. Astron. J. 111, 2150 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Beygu, B., Kreckel, K., van de Weygaert, R., van der Hulst, J. M. & van Gorkom, J. H. An interacting galaxy system along a filament in a void. Astron. J. 145, 120 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Calar Alto void integral-field treasury survey. CAVITY https://cavity.caha.es/.

  • Calar Alto Observatory. CAHA https://www.caha.es/.

  • El-Ad, H. & Piran, T. Voids in the large-scale structure. Astrophys. J. 491, 421–435 (1997).

    Article 
    ADS 

    Google Scholar
     

  • Hoyle, F. & Vogeley, M. S. Voids in the Point Source Catalogue Survey and the Updated Zwicky Catalog. Astrophys. J. 566, 641–651 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Abazajian, K. N. et al. The seventh data release of the Sloan Digital Sky Survey. ApJS 182, 543–558 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Tempel, E., Tuvikene, T., Kipper, R. & Libeskind, N. I. Merging groups and clusters of galaxies from the SDSS data. The catalogue of groups and potentially merging systems. Astron. Astrophys. 602, 100 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Abell, G. O., Corwin, HaroldJ.,G. & Olowin, R. P. A catalog of rich clusters of galaxies. ApJS 70, 1 (1989).

    Article 
    ADS 

    Google Scholar
     

  • Strauss, M. A. et al. Spectroscopic target selection in the Sloan Digital Sky Survey: the main galaxy sample. Astron. J. 124, 1810–1824 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Argudo-Fernández, M. et al. Catalogues of isolated galaxies, isolated pairs, and isolated triplets in the local Universe. Astron. Astrophys. 578, 110 (2015).

    Article 

    Google Scholar
     

  • Sánchez-Blázquez, P. et al. Medium-resolution Isaac Newton Telescope library of empirical spectra. Mon. Not. R. Astron. Soc. 371, 703–718 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Falcón-Barroso, J. et al. An updated MILES stellar library and stellar population models. Astron. Astrophys. 532, 95 (2011).

    Article 

    Google Scholar
     

  • Vazdekis, A. et al. Evolutionary stellar population synthesis with MILES – II. Scaled-solar and α-enhanced models. Mon. Not. R. Astron. Soc. 449, 1177–1214 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Vazdekis, A., Koleva, M., Ricciardelli, E., Röck, B. & Falcón-Barroso, J. UV-extended E-MILES stellar population models: young components in massive early-type galaxies. Mon. Not. R. Astron. Soc. 463, 3409–3436 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Cappellari, M. & Emsellem, E. Parametric recovery of line-of-sight velocity distributions from absorption-line spectra of galaxies via penalized likelihood. PASP 116, 138–147 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Cappellari, M. Improving the full spectrum fitting method: accurate convolution with Gauss–Hermite functions. Mon. Not. R. Astron. Soc. 466, 798–811 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Cappellari, M. Full spectrum fitting with photometry in ppxf: non-parametric star formation history, metallicity and the quenching boundary from 3200 LEGA-C galaxies at redshift z ≈ 0.8. Preprint at https://doi.org/10.48550/arXiv.2208.14974 (2022).

  • Ocvirk, P., Pichon, C., Lançon, A. & Thiébaut, E. STECMAP: STEllar Content from high-resolution galactic spectra via Maximum A Posteriori. Mon. Not. R. Astron. Soc. 365, 46–73 (2006).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ocvirk, P., Pichon, C., Lançon, A. & Thiébaut, E. STECKMAP: STEllar Content and Kinematics from high resolution galactic spectra via Maximum A Posteriori. Mon. Not. R. Astron. Soc. 365, 74–84 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Pietrinferni, A., Cassisi, S., Salaris, M. & Castelli, F. A large stellar evolution database for population synthesis studies. I. Scaled solar models and isochrones. Astrophys. J. 612, 168–190 (2004).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kroupa, P. On the variation of the initial mass function. Mon. Not. R. Astron. Soc. 322, 231–246 (2001).

    Article 
    ADS 

    Google Scholar
     

  • García-Benito, R. et al. Spatially resolved mass-to-light from the CALIFA survey. Mass-to-light ratio vs. color relations. Astron. Astrophys. 621, 120 (2019).

    Article 

    Google Scholar
     

  • Photometric predictions. MILES http://research.iac.es/proyecto/miles/pages/predicted-masses-and-photometric-observables-based-on-photometric-libraries.php.

  • Vazdekis, A., Casuso, E., Peletier, R. F. & Beckman, J. E. A new chemo-evolutionary population synthesis model for early-type galaxies. I. Theoretical basis. ApJS 106, 307 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Blakeslee, J. P., Vazdekis, A. & Ajhar, E. A. Stellar populations and surface brightness fluctuations: new observations and models. Mon. Not. R. Astron. Soc. 320, 193–216 (2001).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Vazdekis, A. et al. Evolutionary stellar population synthesis with MILES – I. The base models and a new line index system. Mon. Not. R. Astron. Soc. 404, 1639–1671 (2010).

    ADS 

    Google Scholar
     

  • Alfaro, I. G., Rodriguez, F., Ruiz, A. N. & Lambas, D. G. How galaxies populate haloes in very low-density environments. An analysis of the halo occupation distribution in cosmic voids. Astron. Astrophys. 638, 60 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Artale, M. C., Zehavi, I., Contreras, S. & Norberg, P. The impact of assembly bias on the halo occupation in hydrodynamical simulations. Mon. Not. R. Astron. Soc. 480, 3978–3992 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Habouzit, M. et al. Properties of simulated galaxies and supermassive black holes in cosmic voids. Mon. Not. R. Astron. Soc. 493, 899–921 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Rosas-Guevara, Y., Tissera, P., Lagos, Cd. P., Paillas, E. & Padilla, N. Revealing the properties of void galaxies and their assembly using the EAGLE simulation. Mon. Not. R. Astron. Soc. 517, 712–731 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Constantin, A., Hoyle, F. & Vogeley, M. S. Active galactic nuclei in void regions. Astrophys. J. 673, 715–729 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ceccarelli, L., Duplancic, F. & Garcia Lambas, D. The impact of void environment on AGN. Mon. Not. R. Astron. Soc. 509, 1805–1819 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Amiri, A., Tavasoli, S. & De Zotti, G. Role of environment on nuclear activity. Astrophys. J. 874, 140 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kereš, D., Katz, N., Weinberg, D. H. & Davé, R. How do galaxies get their gas? Mon. Not. R. Astron. Soc. 363, 2–28 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Domínguez-Gómez, J. et al. CO-CAVITY pilot survey: molecular gas and star formation in void galaxies. Astron. Astrophys. 658, 124 (2022).

    Article 

    Google Scholar
     

  • Kenney, J. D. & Young, J. S. CO in H I-deficient Virgo cluster spiral galaxies. Astrophys. J. 301, 13 (1986).

    Article 
    ADS 

    Google Scholar
     

  • Sage, L. J., Weistrop, D., Cruzen, S. & Kompe, C. Molecular gas and star formation within galaxies in the Bootes Void. Astron. J. 114, 1753 (1997).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Das, M., Saito, T., Iono, D., Honey, M. & Ramya, S. Detection of molecular gas in void galaxies: implications for star formation in isolated environments. Astrophys. J. 815, 40 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Cortese, L. et al. The selective effect of environment on the atomic and molecular gas-to-dust ratio of nearby galaxies in the Herschel Reference Survey. Mon. Not. R. Astron. Soc. 459, 3574–3584 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Grossi, M. et al. Star-forming dwarf galaxies in the Virgo cluster: the link between molecular gas, atomic gas, and dust. Astron. Astrophys. 590, 27 (2016).

    Article 

    Google Scholar
     

  • Ahumada, R. et al. The 16th data release of the Sloan Digital Sky Surveys: first release from the APOGEE-2 Southern Survey and full release of eBOSS spectra. ApJS 249, 3 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Domínguez Sánchez, H., Huertas-Company, M., Bernardi, M., Tuccillo, D. & Fischer, J. L. Improving galaxy morphologies for SDSS with Deep Learning. Mon. Not. R. Astron. Soc. 476, 3661–3676 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Source link