May 19, 2024
Gate-tunable heavy fermions in a moiré Kondo lattice – Nature

Gate-tunable heavy fermions in a moiré Kondo lattice – Nature

  • Stewart, G. R. Heavy-fermion systems. Rev. Mod. Phys. 56, 755–787 (1984).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kirchner, S. et al. Colloquium: heavy-electron quantum criticality and single-particle spectroscopy. Rev. Mod. Phys. 92, 011002 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Paschen, S. & Si, Q. Quantum phases driven by strong correlations. Nat. Rev. Phys. 3, 9–26 (2021).

    Article 

    Google Scholar
     

  • Coleman, P. Heavy fermions and the Kondo lattice: a 21st century perspective. Preprint at https://arxiv.org/abs/1509.05769 (2015).

  • Kennes, D. M. et al. Moiré heterostructures as a condensed-matter quantum simulator. Nat. Phys. 17, 155–163 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Mak, K. F. & Shan, J. Semiconductor moiré materials. Nat. Nanotechnol. 17, 686–695 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Maksimovic, N. et al. Evidence for a delocalization quantum phase transition without symmetry breaking in CeCoIn5. Science 375, 76–81 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Senthil, T., Vojta, M. & Sachdev, S. Weak magnetism and non-Fermi liquids near heavy-fermion critical points. Phys. Rev. B 69, 035111 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Vojta, M. Orbital-selective Mott transitions: heavy fermions and beyond. J. Low Temp. Phys. 161, 203–232 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Andrei, E. Y. et al. The marvels of moiré materials. Nat. Rev. Mater. 6, 201–206 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Andrei, E. Y. & MacDonald, A. H. Graphene bilayers with a twist. Nat. Mater. 19, 1265–1275 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tang, Y. et al. Simulation of Hubbard model physics in WSe2/WS2 moiré superlattices. Nature 579, 353–358 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Regan, E. C. et al. Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices. Nature 579, 359–363 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, F., Lovorn, T., Tutuc, E. & Macdonald, A. H. Hubbard model physics in transition metal dichalcogenide moiré bands. Phys. Rev. Lett. 121, 026402 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kumar, A., Hu, N. C., Macdonald, A. H. & Potter, A. C. Gate-tunable heavy fermion quantum criticality in a moiré Kondo lattice. Phys. Rev. B 106, L041116 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Guerci, D. et al. Chiral Kondo lattice in doped MoTe2/WSe2 bilayers. Preprint at https://arxiv.org/abs/2207.06476 (2022).

  • Ramires, A. & Lado, J. L. Emulating heavy fermions in twisted trilayer graphene. Phys. Rev. Lett. 127, 026401 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Dalal, A. & Ruhman, J. Orbitally selective Mott phase in electron-doped twisted transition metal-dichalcogenides: a possible realization of the Kondo lattice model. Phys. Rev. Res. 3, 043173 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Song, Z.-D. & Bernevig, B. A. Magic-angle twisted bilayer graphene as a topological heavy fermion problem. Phys. Rev. Lett. 129, 047601 (2022).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Vaňo, V. et al. Artificial heavy fermions in a van der Waals heterostructure. Nature 599, 582–586 (2021).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Li, T. et al. Quantum anomalous Hall effect from intertwined moiré bands. Nature 600, 641–646 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, T. et al. Continuous Mott transition in semiconductor moiré superlattices. Nature 597, 350–354 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, W. et al. Realization of the Haldane Chern insulator in a moiré lattice. Preprint at https://arxiv.org/abs/2207.02312 (2022).

  • Zhang, Y., Devakul, T. & Fu, L. Spin-textured Chern bands in AB-stacked transition metal dichalcogenide bilayers. Proc. Natl Acad. Sci. USA 118, e2112673118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rademaker, L. Spin-orbit coupling in transition metal dichalcogenide heterobilayer flat bands. Phys. Rev. B 105, 195428 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Pan, H., Xie, M., Wu, F. & Sarma, S. D. Topological phases in AB-stacked MoTe2/WSe2: Z2 topological insulators, Chern insulators, and topological charge density waves. Phys. Rev. Lett. 129, 056804 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Devakul, T. & Fu, L. Quantum anomalous Hall effect from inverted charge transfer gap. Phys. Rev. X 12, 021031 (2022).

    CAS 

    Google Scholar
     

  • Varma, C. M. Mixed-valence compounds. Rev. Mod. Phys. 48, 219–238 (1976).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gu, J. et al. Dipolar excitonic insulator in a moiré lattice. Nat. Phys. 18, 395–400 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, Z. et al. Correlated interlayer exciton insulator in heterostructures of monolayer WSe2 and moiré WS2/WSe2. Nat. Phys. 18, 1214–1220 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Fallahazad, B. et al. Shubnikov–de Haas oscillations of high-mobility holes in monolayer and bilayer WSe2: Landau level degeneracy, effective mass, and negative compressibility. Phys. Rev. Lett. 116, 086601 (2016).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Kadowaki, K. & Woods, S. B. Universal relationship of the resistivity and specific heat in heavy-fermion compounds. Solid State Comm. 58, 507–509 (1986).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kitagawa, S. et al. Metamagnetic behavior and Kondo breakdown in heavy-fermion CeFePO. Phys. Rev. Lett. 107, 277002 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gegenwart, P., Si, Q. & Steglich, F. Quantum criticality in heavy-fermion metals. Nat. Phys. 4, 186–197 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Mak, K. F., Xiao, D. & Shan, J. Light–valley interactions in 2D semiconductors. Nat. Photon. 12, 451–460 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Löhneysen, H. V., Rosch, A., Vojta, M. & Wölfle, P. Fermi-liquid instabilities at magnetic quantum phase transitions. Rev. Mod. Phys. 79, 1015–1075 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Paschen, S. et al. Hall-effect evolution across a heavy-fermion quantum critical point. Nature 432, 881–885 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Burdin, S., Georges, A. & Grempel, D. R. Coherence scale of the Kondo lattice. Phys. Rev. Lett. 85, 1048–1051 (2000).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sarma, S. D. & Liao, Y. Know the enemy: 2D Fermi liquids. Ann. Phys. 435, 168495 (2021).

    Article 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, R., Koutsos, V. & Cheung, R. Elastic properties of suspended multilayer WSe2. Appl. Phys. Lett. 108, 042104 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Sun, Y. et al. Elastic properties and fracture behaviors of biaxially deformed, polymorphic MoTe2. Nano Lett. 19, 761–769 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Source link