May 5, 2024

GluD1 is a signal transduction device disguised as an ionotropic receptor

  • 1.

    Uemura, T. et al. Trans-synaptic interaction of GluRδ2 and Neurexin through Cbln1 mediates synapse formation in the cerebellum. Cell 141, 1068–1079 (2010).

    CAS 
    Article 

    Google Scholar
     

  • 2.

    Joo, J. Y. et al. Differential interactions of cerebellin precursor protein (Cbln) subtypes and neurexin variants for synapse formation of cortical neurons. Biochem. Biophys. Res. Commun. 406, 627–632 (2011).

    CAS 
    Article 

    Google Scholar
     

  • 3.

    Matsuda, K. et al. Cbln1 is a ligand for an orphan glutamate receptor δ2, a bidirectional synapse organizer. Science 328, 363–368 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 4.

    Yuzaki, M. & Aricescu, A. R. A GluD coming-of-age story. Trends Neurosci. 40, 138–150 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 5.

    Dai, J., Aoto, J. & Südhof, T. C. Alternative splicing of presynaptic neurexins differentially controls postsynaptic NMDA and AMPA receptor responses. Neuron 102, 993–1008.e5 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 6.

    Aoto, J., Martinelli, D. C., Malenka, R. C., Tabuchi, K. & Südhof, T. C. Presynaptic neurexin-3 alternative splicing trans-synaptically controls postsynaptic AMPA receptor trafficking. Cell 154, 75–88 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 7.

    Zhu, F., et al. Architecture of the mouse brain synaptome. Neuron 99, 781–799 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 8.

    Nusser, Z. Creating diverse synapses from the same molecules. Curr. Opin. Neurobiol. 51, 8–15 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 9.

    Huganir, R. L. & Nicoll, R. A. AMPARs and synaptic plasticity: the last 25 years. Neuron 80, 704–717 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 10.

    Nakazawa, K. & Sapkota, K. The origin of NMDA receptor hypofunction in schizophrenia. Pharmacol. Ther. 205, 107426 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 11.

    Singh, T., Neale, B. M., & Daly, M. J. Exome sequencing identifies rare coding variants in 10 genes which confer substantial risk for schizophrenia. Preprint at https://doi.org/10.1101/2020.09.18.20192815 (2020)

  • 12.

    Südhof, T. C. Synaptic neurexin complexes: a molecular code for the logic of neural circuits. Cell 171, 745–769 (2017).

    Article 

    Google Scholar
     

  • 13.

    Gomez, A. M., Traunmüller, L. & Scheiffele, P. Neurexins: molecular codes for shaping neuronal synapses. Nat. Rev. Neurosci. 22, 137–151 (2021).

    CAS 
    Article 

    Google Scholar
     

  • 14.

    Hu, Z., Xiao, X., Zhang, Z. & Li, M. Genetic insights and neurobiological implications from NRXN1 in neuropsychiatric disorders. Mol. Psychiatry 24, 1400–1414 (2019).

    Article 

    Google Scholar
     

  • 15.

    Elegheert, J. et al. Structural basis for integration of GluD receptors within synaptic organizer complexes. Science 353, 295–299 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 16.

    Zhu, S. & Gouaux, E. Structure and symmetry inform gating principles of ionotropic glutamate receptors. Neuropharmacology 112, 11–15 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 17.

    Nakamoto, C. et al. Expression mapping, quantification, and complex formation of GluD1 and GluD2 glutamate receptors in adult mouse brain. J. Comp. Neurol. 528, 1003–1027 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 18.

    Platt, R. J. et al. CRISPR–Cas9 knockin mice for genome editing and cancer modeling. Cell 159, 440–455 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 19.

    Seigneur, E. & Südhof, T. C. Cerebellins are differentially expressed in selective subsets of neurons throughout the brain. J. Comp. Neurol. 525, 3286–3311 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 20.

    Torashima, T. et al. Rescue of abnormal phenotypes in δ2 glutamate receptor-deficient mice by the extracellular N-terminal and intracellular C-terminal domains of the δ2 glutamate receptor. Eur. J. Neurosci. 30, 355–365 (2009).

    Article 

    Google Scholar
     

  • 21.

    Hrvatin, S. et al. Single-cell analysis of experience-dependent transcriptomic states in the mouse visual cortex. Nat. Neurosci. 21, 120–129 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 22.

    Hirai, H. Ca2+-dependent regulation of synaptic δ2 glutamate receptor density in cultured rat Purkinje neurons. Eur. J. Neurosci. 14, 73–82 (2001).

    CAS 
    Article 

    Google Scholar
     

  • 23.

    Sando, R., Jiang, X. & Südhof, T. C. Latrophilin GPCRs direct synapse specificity by coincident binding of FLRTs and teneurins. Science 363, eaav7969 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 24.

    Khalaj, A. J. et al. Deorphanizing FAM19A proteins as pan-neurexin ligands with an unusual biosynthetic binding mechanism. J. Cell Biol. 219, e202004164 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 25.

    Trotter, J. H. et al. Synaptic neurexin-1 assembles into dynamically regulated active zone nanoclusters. J. Cell Biol. 218, 2677–2698 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 26.

    Patzke, C., et al. Neuromodulator signaling bidirectionally controls vesicle numbers in human synapses. Cell 179, 498–513 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 27.

    Dai, J., Chen, P., Tian, H. & Sun, J. Spontaneous vesicle release is not tightly coupled to voltage-gated calcium channel-mediated Ca2+ influx and is triggered by a Ca2+ sensor other than synaptotagmin-2 at the juvenile mice calyx of held synapses. J. Neurosci. 35, 9632–9637 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 28.

    Jiang, X., Sando, R. & Südhof, T. C. Multiple signaling pathways are essential for synapse formation induced by synaptic adhesion molecules. Proc. Natl Acad. Sci. USA 118, e2000173118 (2021).

    Article 

    Google Scholar
     

  • 29.

    Zhang, B. et al. Neuroligins sculpt cerebellar Purkinje-cell circuits by differential control of distinct classes of synapses. Neuron 87, 781–796 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 30.

    Zhang, R. S., Liakath-Ali, K. & Südhof, T. C. Latrophilin-2 and latrophilin-3 are redundantly essential for parallel-fiber synapse function in cerebellum. eLife 9, e54443 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 31.

    Kakegawa, W. et al. Differential regulation of synaptic plasticity and cerebellar motor learning by the C-terminal PDZ-binding motif of GluRδ2. J. Neurosci. 28, 1460–1468 (2008).

    CAS 
    Article 

    Google Scholar
     

  • 32.

    Uemura, T., Mori, H. & Mishina, M. Direct interaction of GluRδ2 with Shank scaffold proteins in cerebellar Purkinje cells. Mol. Cell. Neurosci. 26, 330–341 (2004).

    CAS 
    Article 

    Google Scholar
     

  • Source link