May 4, 2024
High-performance fibre battery with polymer gel electrolyte – Nature

High-performance fibre battery with polymer gel electrolyte – Nature

  • Fan, X. et al. Opportunities of flexible and portable electrochemical devices for energy storage: expanding the spotlight onto semi-solid/solid Electrolytes. Chem. Rev. 122, 17155–17239 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sumboja, A. et al. Electrochemical energy storage devices for wearable technology: a rationale for materials selection and cell design. Chem. Soc. Rev. 47, 5919–5945 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu, Y.-H., Yang, X.-Y., Liu, T. & Zhang, X.-B. Flexible 1D batteries: recent progress and prospects. Adv. Mater. 32, 1901961 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Chang, J., Huang, Q., Gao, Y. & Zheng, Z. Pathways of developing high-energy-density flexible lithium batteries. Adv. Mater. 33, 2004419 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Mackanic, D. G., Chang, T.-H., Huang, Z., Cui, Y. & Bao, Z. Stretchable electrochemical energy storage devices. Chem. Soc. Rev. 49, 4466–4495 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, Q., Stalin, S., Zhao, C.-Z. & Archer, L. A. Designing solid-state electrolytes for safe, energy-dense batteries. Nat. Rev. Mater. 5, 229–252 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Vijayakumar, V., Anothumakkool, B., Kurungot, S., Winter, M. & Nair, J. R. In situ polymerization process: an essential design tool for lithium polymer batteries. Energy Environ. Sci. 14, 2708–2788 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Chen, S. et al. Carbon-Based Fibers for Advanced Electrochemical Energy Storage Devices. Chem. Rev. 120, 2811–2878 (2020).

  • Zhao, Q., Liu, X., Stalin, S., Khan, K. & Archer, L. A. Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries. Nat. Energy 4, 365–373 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ling, S. et al. Densifiable ink extrusion for roll-to-roll fiber lithium-ion batteries with ultra-high linear and volumetric energy densities. Adv. Mater. 35, 2211201 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Y. et al. 3D-printed all-fiber Li-ion battery toward wearable energy storage. Adv. Funct. Mater. 27, 1703140 (2017).

    Article 

    Google Scholar
     

  • Rao, J. et al. All-fiber-based quasi-solid-state lithium-ion battery towards wearable electronic devices with outstanding flexibility and self-healing ability. Nano Energy 51, 425–433 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Ren, J. et al. Elastic and wearable wire-shaped lithium-ion battery with high electrochemical performance. Angew. Chem. Int. Ed. 53, 7864–7869 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Khudiyev, T. et al. Thermally drawn rechargeable battery fiber enables pervasive power. Mater. Today 52, 80–89 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Y., Song, Y., & Xia, Y. Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem. Soc. Rev. 45, 5925–5950 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zapata-Benabithe, Z., Carrasco-Marín, F. & Moreno-Castilla, C. Preparation, surface characteristics, and electrochemical double-layer capacitance of KOH-activated carbon aerogels and their O- and N-doped derivatives. J. Power Sources 219, 80–88 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • El-Kady, M. F. et al. Engineering three-dimensional hybrid supercapacitors and microsupercapacitors for high-performance integrated energy storage. Proc. Natl Acad. Sci. USA 112, 4233–4238 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nishi, T., Nakai, H. & Kita, A. Visualization of the state-of-charge distribution in a LiCoO2 cathode by in situ Raman imaging. J. Electrochem. Soc. 160, A1785 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Maher, K., & Yazami, R. Effect of overcharge on entropy and enthalpy of lithium-ion batteries. Electrochim. Acta 101, 71–78 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Chen, Q. et al. Yolk–shell NiS2 nanoparticle-embedded carbon fibers for flexible fiber-shaped sodium battery. Adv. Energy Mater. 8, 1800054 (2018).

    Article 

    Google Scholar
     

  • Guan, Q. et al. Dendrite-free flexible fiber-shaped Zn battery with long cycle life in water and air. Adv. Energy Mater. 9, 1901434 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Chong, W. G. et al. Lithium–sulfur battery cable made from ultralight, flexible graphene/carbon nanotube/sulfur composite fibers. Adv. Funct. Mater. 27, 1604815 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Lin, H. et al. Twisted aligned carbon nanotube/silicon composite fiber anode for flexible wire-shaped lithium-ion battery. Adv. Mater. 26, 1217–1222 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Xia, Z. et al. Manipulating hierarchical orientation of wet-spun hybrid fibers via rheological engineering for Zn-ion fiber batteries. Adv. Mater. 34, 2203905 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zeng, Y. et al. An ultrastable and high-performance flexible fiber-shaped Ni–Zn battery based on a Ni–NiO heterostructured nanosheet cathode. Adv. Mater. 29, 1702698 (2017).

    Article 

    Google Scholar
     

  • Zhang, Y. et al. Flexible and stretchable lithium-ion batteries and supercapacitors based on electrically conducting carbon nanotube fiber springs. Angew. Chem. Int. Ed. 53, 14564–14568 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hoshide, T. et al. Flexible lithium-ion fiber battery by the regular stacking of two-dimensional titanium oxide nanosheets hybridized with reduced graphene oxide. Nano Lett. 17, 3543–3549 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Weng, W. et al. Winding aligned carbon nanotube composite yarns into coaxial fiber full batteries with high performances. Nano Lett. 14, 3432–3438 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Fang, X., Weng, W., Ren, J. & Peng, H. A cable-shaped lithium sulfur battery. Adv. Mater. 28, 491–496 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He, J. et al. Scalable production of high-performing woven lithium-ion fibre batteries. Nature 597, 57–63 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Y. et al. Super-stretchy lithium-ion battery based on carbon nanotube fiber. J. Mater. Chem. A 2, 11054–11059 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wang, C., He, T., Cheng, J., Guan, Q. & Wang, B. Bioinspired interface design of sewable, weavable, and washable fiber zinc batteries for wearable power textiles. Adv. Funct. Mater. 30, 2004430 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Source link