April 26, 2024
Hmx gene conservation identifies the origin of vertebrate cranial ganglia – Nature

Hmx gene conservation identifies the origin of vertebrate cranial ganglia – Nature

  • Northcutt, R. G. & Gans, C. The genesis of neural crest and epidermal placodes: a reinterpretation of vertebrate origins. Q. Rev. Biol. 58, 1–28 (1983).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Horie, R. et al. Shared evolutionary origin of vertebrate neural crest and cranial placodes. Nature 560, 228–232 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar
     

  • Stolfi, A., Ryan, K., Meinertzhagen, I. A. & Christiaen, L. Migratory neuronal progenitors arise from the neural plate borders in tunicates. Nature 527, 371–374 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar
     

  • Shimeld, S. M. & Holland, P. W. Vertebrate innovations. Proc. Natl Acad. Sci. USA 97, 4449–4452 (2000).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar
     

  • Patthey, C. et al. Identification of molecular signatures specific for distinct cranial sensory ganglia in the developing chick. Neural Dev. 11, 3 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Adamska, M. et al. Five Nkx5 genes show differential expression patterns in anlagen of sensory organs in medaka: insight into the evolution of the gene family. Dev. Genes Evol. 211, 338–349 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang, W., Lo, P., Frasch, M. & Lufkin, T. Hmx: an evolutionary conserved homeobox gene family expressed in the developing nervous system in mice and Drosophila. Mech. Dev. 99, 123–137 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Feng, Y. & Xu, Q. Pivotal role of hmx2 and hmx3 in zebrafish inner ear and lateral line development. Dev. Biol. 339, 507–518 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kelly, L. E. & El-Hodiri, H. M. Xenopus laevis Nkx5.3 and sensory organ homeobox (SOHo) are expressed in developing sensory organs and ganglia of the head and anterior trunk. Dev. Genes Evol. 226, 423–428 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kiernan, A. E., Nunes, F., Wu, D. K. & Fekete, D. M. The expression domain of two related homeobox genes defines a compartment in the chicken inner ear that may be involved in semicircular canal formation. Dev. Biol. 191, 215–229 (1997).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Quina, L. A., Tempest, L., Hsu, Y. W., Cox, T. C. & Turner, E. E. Hmx1 is required for the normal development of somatosensory neurons in the geniculate ganglion. Dev. Biol. 365, 152–163 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Takahashi, H., Shintani, T., Sakuta, H. & Noda, M. CBF1 controls the retinotectal topographical map along the anteroposterior axis through multiple mechanisms. Development 130, 5203–5215 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bayramov, A. V., Martynova, N. Y., Eroshkin, F. M., Ermakova, G. V. & Zaraisky, A. G. The homeodomain-containing transcription factor X-nkx-5.1 inhibits expression of the homeobox gene Xanf-1 during the Xenopus laevis forebrain development. Mech. Dev. 121, 1425–1441 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Takatori, N. et al. Comprehensive survey and classification of homeobox genes in the genome of amphioxus, Branchiostoma floridae. Dev. Genes Evol. 218, 579–590 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wada, S. et al. A genomewide survey of developmentally relevant genes in Ciona intestinalis. II. Genes for homeobox transcription factors. Dev. Genes Evol. 213, 222–234 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ryan, K., Lu, Z. & Meinertzhagen, I. A. The CNS connectome of a tadpole larva of Ciona intestinalis (L.) highlights sidedness in the brain of a chordate sibling. eLife 5, e16962 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wang, W., Chan, E. K., Baron, S., Van de Water, T. & Lufkin, T. Hmx2 homeobox gene control of murine vestibular morphogenesis. Development 128, 5017–5029 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang, W., Grimmer, J. F., Van De Water, T. R. & Lufkin, T. Hmx2 and Hmx3 homeobox genes direct development of the murine inner ear and hypothalamus and can be functionally replaced by Drosophila Hmx. Dev. Cell 7, 439–453 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang, W., Van De Water, T. & Lufkin, T. Inner ear and maternal reproductive defects in mice lacking the Hmx3 homeobox gene. Development 125, 621–634 (1998).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tang, W. J., Chen, J. S. & Zeller, R. W. Transcriptional regulation of the peripheral nervous system in Ciona intestinalis. Dev. Biol. 378, 183–193 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Sharma, S., Wang, W. & Stolfi, A. Single-cell transcriptome profiling of the Ciona larval brain. Dev. Biol. 448, 226–236 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kim, K. et al. Regulation of neurogenesis by FGF signaling and neurogenin in the invertebrate chordate ciona. Front. Cell Dev. Biol. 8, 477 (2020).

    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar
     

  • Chacha, P. P. et al. Neuronal identities derived by misexpression of the POU IV sensory determinant in a protovertebrate. Proc. Natl Acad. Sci. USA 119, e2118817119 (2022).

    PubMed 
    Article 

    Google Scholar
     

  • Brozovic, M. et al. ANISEED 2017: extending the integrated ascidian database to the exploration and evolutionary comparison of genome-scale datasets. Nucleic Acids Res. 46, D718–D725 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Doglio, L. et al. Parallel evolution of chordate cis-regulatory code for development. PLoS Genet. 9, e1003904 (2013).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • McEwen, G. K. et al. Early evolution of conserved regulatory sequences associated with development in vertebrates. PLoS Genet. 5, e1000762 (2009).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Shimeld, S. M. & Donoghue, P. C. Evolutionary crossroads in developmental biology: cyclostomes (lamprey and hagfish). Development 139, 2091–2099 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Parker, H. J., Bronner, M. E. & Krumlauf, R. A Hox regulatory network of hindbrain segmentation is conserved to the base of vertebrates. Nature 514, 490–493 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar
     

  • Scerbo, P. & Monsoro-Burq, A. H. The vertebrate-specific VENTX/NANOG gene empowers neural crest with ectomesenchyme potential. Sci. Adv. 6, eaaz1469 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar
     

  • Zalc, A. et al. Reactivation of the pluripotency program precedes formation of the cranial neural crest. Science 371, eabb4776 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mazet, F. et al. Molecular evidence from Ciona intestinalis for the evolutionary origin of vertebrate sensory placodes. Dev. Biol. 282, 494–508 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Roure, A., Lemaire, P. & Darras, S. An otx/nodal regulatory signature for posterior neural development in ascidians. PLoS Genet. 10, e1004548 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Holland, L. Z. Tunicates. Curr. Biol. 26, R146–R152 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Brunetti, R. et al. Morphological evidence that the molecularly determined Ciona intestinalis type A and type B are different species: Ciona robusta and Ciona intestinalis. J. Zool. Syst. Evol. Res. 53, 186–193 (2015).

    Article 

    Google Scholar
     

  • Adameyko, I. et al. Schwann cell precursors from nerve innervation are a cellular origin of melanocytes in skin. Cell 139, 366–379 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Adamska, M. et al. Inner ear and lateral line expression of a zebrafish Nkx5-1 gene and its downregulation in the ears of FGF8 mutant, ace. Mech. Dev. 97, 161–165 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Apostolova, G. et al. Neurotransmitter phenotype-specific expression changes in developing sympathetic neurons. Mol. Cell. Neurosci. 35, 397–408 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bober, E., Baum, C., Braun, T. & Arnold, H. H. A novel NK-related mouse homeobox gene: expression in central and peripheral nervous structures during embryonic development. Dev. Biol. 162, 288–303 (1994).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Boisset, G. & Schorderet, D. F. Zebrafish hmx1 promotes retinogenesis. Exp. Eye Res. 105, 34–42 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Herbrand, H. et al. Two regulatory genes, cNkx5-1 and cPax2, show different responses to local signals during otic placode and vesicle formation in the chick embryo. Development 125, 645–654 (1998).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Munroe, R. J. et al. Mouse H6 homeobox 1 (Hmx1) mutations cause cranial abnormalities and reduced body mass. BMC Dev. Biol 9, 27 (2009).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Quina, L. A. et al. Deletion of a conserved regulatory element required for Hmx1 expression in craniofacial mesenchyme in the dumbo rat: a newly identified cause of congenital ear malformation. Dis. Model Mech. 5, 812–822 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hartwell, R. D. et al. Anteroposterior patterning of the zebrafish ear through Fgf- and Hh-dependent regulation of hmx3a expression. PLoS Genet. 15, e1008051 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Liu, J. et al. Evolutionarily conserved regulation of hypocretin neuron specification by Lhx9. Development 142, 1113–1124 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lara-Ramirez, R., Poncelet, G., Patthey, C. & Shimeld, S. M. The structure, splicing, synteny and expression of lamprey COE genes and the evolution of the COE gene family in chordates. Dev. Genes Evol. 227, 319–338 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Smith, J. J. et al. Sequencing of the sea lamprey (Petromyzon marinus) genome provides insights into vertebrate evolution. Nat. Genet. 45, 415–421 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Smith, J. J. et al. The sea lamprey germline genome provides insights into programmed genome rearrangement and vertebrate evolution. Nat. Genet. 50, 270–277 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mehta, T. K. et al. Evidence for at least six Hox clusters in the Japanese lamprey (Lethenteron japonicum). Proc. Natl Acad. Sci. USA 110, 16044–16049 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar
     

  • Woolfe, A. et al. CONDOR: a database resource of developmentally associated conserved non-coding elements. BMC Dev. Biol. 7, 100 (2007).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Marletaz, F. et al. Amphioxus functional genomics and the origins of vertebrate gene regulation. Nature 564, 64–70 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar
     

  • Lara-Ramirez, R., Patthey, C. & Shimeld, S. M. Characterization of two neurogenin genes from the brook lamprey Lampetra planeri and their expression in the lamprey nervous system. Dev. Dyn. 244, 1096–1108 (2015).

    PubMed 
    Article 

    Google Scholar
     

  • Boorman, C. J. & Shimeld, S. M. Pitx homeobox genes in Ciona and amphioxus show left–right asymmetry is a conserved chordate character and define the ascidian adenohypophysis. Evol. Dev. 4, 354–365 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Fuentes, M. et al. Insights into spawning behavior and development of the European amphioxus (Branchiostoma lanceolatum). J. Exp. Zool. B 308, 484–493 (2007).

    Article 

    Google Scholar
     

  • Fuentes, M. et al. Preliminary observations on the spawning conditions of the European amphioxus (Branchiostoma lanceolatum) in captivity. J. Exp. Zool. B 302, 384–391 (2004).

    Article 

    Google Scholar
     

  • Holland, P. W. H. Wholemount in situ hybridization to amphioxus embryos. Methods Mol. Biol. 97, 641–644 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • Parker, H. J., Sauka-Spengler, T., Bronner, M. & Elgar, G. A reporter assay in lamprey embryos reveals both functional conservation and elaboration of vertebrate enhancers. PLoS ONE 9, e85492 (2014).

    PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Corbo, J. C., Levine, M. & Zeller, R. W. Characterization of a notochord-specific enhancer from the Brachyury promoter region of the ascidian, Ciona intestinalis. Development 124, 589–602 (1997).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Nakamura, M. J., Terai, J., Okubo, R., Hotta, K. & Oka, K. Three-dimensional anatomy of the Ciona intestinalis tailbud embryo at single-cell resolution. Dev. Biol. 372, 274–284 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Harafuji, N., Keys, D. N. & Levine, M. Genome-wide identification of tissue-specific enhancers in the Ciona tadpole. Proc. Natl Acad. Sci. USA 99, 6802–6805 (2002).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar
     

  • Chen, W. C. et al. Dissection of a Ciona regulatory element reveals complexity of cross-species enhancer activity. Dev. Biol. 390, 261–272 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kari, W., Zeng, F., Zitzelsberger, L., Will, J. & Rothbacher, U. Embryo microinjection and electroporation in the chordate Ciona intestinalis. J. Vis. Exp. 16, 54313 (2016).


    Google Scholar
     

  • Stolfi, A., Gandhi, S., Salek, F. & Christiaen, L. Tissue-specific genome editing in Ciona embryos by CRISPR–Cas9. Development 141, 4115–4120 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Source link