May 18, 2024
Homomeric chains of intermolecular bonds scaffold octahedral germanium perovskites – Nature

Homomeric chains of intermolecular bonds scaffold octahedral germanium perovskites – Nature

  • Chiara, R., Morana, M. & Malavasi, L. Germanium-based halide perovskites: materials, properties, and applications. Chempluschem 86, 879–888 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stoumpos, C. C. et al. Hybrid germanium iodide perovskite semiconductors: active lone pairs, structural distortions, direct and indirect energy gaps, and strong nonlinear optical properties. J. Am. Chem. Soc. 137, 6804–6819 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ke, W. & Kanatzidis, M. G. Prospects for low-toxicity lead-free perovskite solar cells. Nat. Commun. 10, 965 (2019).

    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Chen, M. et al. Highly stable and efficient all-inorganic lead-free perovskite solar cells with native-oxide passivation. Nat. Commun. 10, 16 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Glück, N. & Bein, T. Prospects of lead-free perovskite-inspired materials for photovoltaic applications. Energy Environ. Sci. 13, 4691–4716 (2020).

    Article 

    Google Scholar
     

  • Xiao, Z., Song, Z. & Yan, Y. From lead halide perovskites to lead-free metal halide perovskites and perovskite derivatives. Adv. Mater. 31, 1803792 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Desiraju, G. R. Crystal engineering: from molecule to crystal. J. Am. Chem. Soc. 135, 9952–9967 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mukherjee, A. Building upon supramolecular synthons: some aspects of crystal engineering. Cryst. Growth Des. 15, 3076–3085 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Fu, Y. et al. Metal halide perovskite nanostructures for optoelectronic applications and the study of physical properties. Nat Rev Mater 4, 169–188 (2019).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Nayak, P. K., Mahesh, S., Snaith, H. J. & Cahen, D. Photovoltaic solar cell technologies: analysing the state of the art. Nat Rev Mater 4, 269–285 (2019).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Kim, J. Y., Lee, J. W., Jung, H. S., Shin, H. & Park, N. G. High-efficiency perovskite solar cells. Chem. Rev. 120, 7867–7918 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hailegnaw, B., Kirmayer, S., Edri, E., Hodes, G. & Cahen, D. Rain on methylammonium lead iodide based perovskites: possible environmental effects of perovskite solar cells. J. Phys. Chem. Lett. 6, 1543–1547 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Babayigit, A., Ethirajan, A., Muller, M. & Conings, B. Toxicity of organometal halide perovskite solar cells. Nat. Mater. 15, 247–251 (2016).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Siebentritt, S. et al. Heavy alkali treatment of Cu(In,Ga)Se2 solar cells: surface versus bulk effects. Adv. Energy Mater. 10, 1903752 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Hoye, R. L. Z. et al. Fundamental carrier lifetime exceeding 1 µs in Cs2AgBiBr6 double perovskite. Adv. Mater. Interfaces 5, 1800464 (2018).

    Article 

    Google Scholar
     

  • Seo, D. K., Gupta, N., Whangbo, M. H., Hillebrecht, H. & Thiele, G. Pressure-induced changes in the structure and band gap of CsGeX3 (X = Cl, Br) studied by electronic band structure calculations. Inorg. Chem. 37, 407–410 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Filip, M. R. & Giustino, F. The geometric blueprint of perovskites. Proc. Natl Acad. Sci. USA 115, 5397–5402 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Li, X. et al. Tolerance factor for stabilizing 3D hybrid halide perovskitoids using linear diammonium cations. J. Am. Chem. Soc. 144, 3902–3912 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fedorovskiy, A. E., Drigo, N. A. & Nazeeruddin, M. K. The role of Goldschmidt’s tolerance factor in the formation of A2BX6 double halide perovskites and its optimal range. Small Methods 4, 1900426 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Yamada, K., Mikawa, K., Okuda, T. & Knight, K. S. Static and dynamic structures of CD3ND3GeCl3 studied by TOF high resolution neutron powder diffraction and solid state NMR. J. Chem. Soc. Dalton Trans. 10, 2112–2118 (2002).

    Article 

    Google Scholar
     

  • Yamada, K. et al. Structural phase transitions of the polymorphs of CsSnI3 by means of Rietveld analysis of the X-ray diffraction. Chem. Lett. 20, 801–804 (1991).

    Article 

    Google Scholar
     

  • Varignon, J., Bibes, M. & Zunger, A. Origins versus fingerprints of the Jahn–Teller effect in d-electron ABX3 perovskites. Phys Rev Res 1, 033131 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Albright, T. A., Burdett, J. K. & Whangbo, M. H. Orbital Interactions in Chemistry. 2nd edn (Wiley, 2013).

  • Schwarz, U., Wagner, F., Syassen, K. & Hillebrecht, H. Effect of pressure on the optical-absorption edges of CsGeBr3 and CsGeCl3. Phys. Rev. B Condens. Matter Mater. Phys. 53, 12545–12548 (1996).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Thiele, G., Rotter, H. W. & Schmidt, K. D. Kristallstrukturen und Phasentransformationen von Caesiumtrihalogenogermanaten(II) CsGeX3 (X = Cl, Br, I). ZAAC J. Inorg. Gen. Chem. 545, 148–156 (1987).

    CAS 

    Google Scholar
     

  • Christensen, A. N. et al. A ferroelectric chloride of perowskite type crystal structure of CsGeCl3. Acta Chem. Scand. 19, 421–428 (1965).

    Article 
    CAS 

    Google Scholar
     

  • Saparov, B. & Mitzi, D. B. Organic-inorganic perovskites: structural versatility for functional materials design. Chem. Rev. 116, 4558–4596 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jana, M. K. et al. Structural descriptor for enhanced spin-splitting in 2D hybrid perovskites. Nat. Commun. 12, 4982 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Cavallo, G. et al. The halogen bond. Chem. Rev. 116, 2478–2601 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Varadwaj, P. R., Varadwaj, A. & Marques, H. M. Halogen bonding: a halogen-centered noncovalent interaction yet to be understood. Inorganics (Basel) 7, 40 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Metrangolo, P., Canil, L., Abate, A., Terraneo, G. & Cavallo, G. Halogen bonding in perovskite solar cells: a new tool for improving solar energy conversion. Angew. Chem. Int. Ed. Engl. 61, e202114793 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ball, M. L., Milic, J. V. & Loo, Y. L. The emerging role of halogen bonding in hybrid perovskite photovoltaics. Chem. Mater. 23, 8 (2021).


    Google Scholar
     

  • Fu, X. et al. Halogen-halogen bonds enable improved long-term operational stability of mixed-halide perovskite photovoltaics. Chem 7, 3131–3143 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Baur, W. H. The geometry of polyhedral distortions. Predictive relationships for the phosphate group. Acta Crystallogr. B 30, 1195–1215 (1974).

    Article 
    CAS 

    Google Scholar
     

  • Baldrighi, M. et al. Polymorphs and co-crystals of haloprogin: an antifungal agent. CrystEngComm 16, 5897–5904 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Wang, P. X. et al. Structural distortion and bandgap increase of two-dimensional perovskites induced by trifluoromethyl substitution on spacer cations. J. Phys. Chem. Lett. 11, 10144–10149 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Payne, M. C., Teter, M. P., Allan, D. C., Arias, T. A. & Joannopoulos, J. D. Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev. Mod. Phys. 64, 1045–1097 (1992).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    Article 
    MathSciNet 
    ADS 

    Google Scholar
     

  • Krukau, A. V., Vydrov, O. A., Izmaylov, A. F. & Scuseria, G. E. Influence of the exchange screening parameter on the performance of screened hybrid functionals. J. Chem. Phys. 125, 5029 (2006).

    Article 

    Google Scholar
     

  • Source link