May 4, 2024
Human–machine collaboration for improving semiconductor process development – Nature

Human–machine collaboration for improving semiconductor process development – Nature

  • IEEE. International Roadmap for Devices and Systems, 2020 Edition (IEEE, 2020).

  • Graves, D. B. Plasma processing. IEEE Trans. Plasma Sci. 22, 31–42 (1994).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kanarik, K. J. Inside the mysterious world of plasma: a process engineer’s perspective. J. Vac. Sci. Technol. A 38, 031004 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Kurzweil, R. The Singularity is Near: When Humans Transcend Biology (Viking, 2005).

  • Tegmark, M. Life 3.0: Being Human in the Age of Artificial Intelligence (Penguin, 2018).

  • Hsu, F.-H. Behind Deep Blue: Building the Computer that Defeated the World Chess Champion (Princeton Univ. Press, 2002).

  • Silver, D. et al. Mastering the game of Go without human knowledge. Nature 550, 354–359 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Samukawa, S. et al. The 2012 plasma roadmap. J. Phys. D 45, 253001 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Winters, H. F., Coburn, J. W. & Kay, E. Plasma etching a “pseudo-black-box” approach. J. Appl. Phys. 48, 4973–4983 (1977).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhang, Y. & Ling, C. A strategy to apply machine learning to small datasets in materials science. NPJ Comput. Mater. 4, 28–33 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Kim, K. et al. Extending the DRAM and FLASH memory technologies to 10nm and beyond. Proc. SPIE 8326, 832605 (2012).

    Article 

    Google Scholar
     

  • Greenhill, S., Rana, S., Gupta, S., Vellanki, P. & Venkatesh, S. Bayesian optimization for adaptive experimental design: a review. IEEE Access 8, 13937–13948 (2020).

    Article 

    Google Scholar
     

  • Shao, K., Pei, X., Grave, D. B. & Mesbah, A. Active learning-guided exploration of parameter space of air plasmas to enhance the energy efficiency of NOx production. Plasma Sources Sci. Technol. 31, 055018 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Shahriari, B., Swersky, K., Wang, Z., Adams, R. P. & De Freitas, N. Taking the human out of the loop: a review of Bayesian optimization. Proc. IEEE 104, 148–175 (2016).

    Article 

    Google Scholar
     

  • Lang, C. I., Jansen, A., Didari, S., Kothnur, P. & Boning, D. S. Modeling and optimizing the impact of process and equipment parameters in sputtering deposition systems using a Gaussian process machine learning framework. IEEE Trans. Semicond. Manuf. 35, 229–240 (2021).

    Article 

    Google Scholar
     

  • Chen, Z., Mak, S. & Wu, C. F. J. A hierarchical expected improvement method for Bayesian optimization. Preprint at https://doi.org/10.48550/arxiv.1911.07285 (2019).

  • Guler, S., Schoukens, M., Perez, T. D. & Husakowski, J. Bayesian optimization for tuning lithography processes. IFAC-PapersOnLine 54, 827–832 (2021).

    Article 

    Google Scholar
     

  • Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the MCMC hammer. Publ. Astron. Soc. Pac. 125, 306 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Akiba, T., Sano, S., Yanase, T., Ohta, T. & Koyama, M. in Proc. 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining 2623–2631 (ACM, 2019).

  • Bergstra, J., Bardenet, R., Bengio, Y. & Kégl, B. in Proc. 24th International Conference on Neural Information Processing Systems (Curran Associates, 2011).

  • Rasmussen, C. E. & Williams, C. K. I. Gaussian Processes for Machine Learning (MIT Press, 2006).

  • Fortuin, V. Priors in Bayesian deep learning: a review. Int. Stat. Rev. 90, 563–591 (2022).

    Article 
    MathSciNet 

    Google Scholar
     

  • Liang, Q. et al. Benchmarking the performance of Bayesian optimization across multiple experimental materials science domains. NPJ Comput. Mater. 7, 188 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Silver, N. The Signal and the Noise: Why so Many Predictions Fail-But Some Don’t (Penguin, 2012).

  • Miller, J. L. Chemistry Nobel winners harnessed evolution to teach old proteins new tricks. Phys. Today 71, 22–25 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Dietvorst, B. J., Simmons, J. P. & Massey, C. Algorithm aversion: people erroneously avoid algorithms after seeing them err. J. Exp. Psychol. Gen. 144, 114–126 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Dafoe, A. et al. Cooperative AI: machines must learn to find common ground. Nature 593, 33–36 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • AlphaGo versus Lee Sedol. Wikipedia https://en.wikipedia.org/wiki/AlphaGo_versus_Lee_Sedol (2021).

  • Pan, S. J. & Yang, Q. A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22, 1345–1359 (2010).

    Article 

    Google Scholar
     

  • Ziatdinov, M. A., Ghosh, A. & Kalinin, S. V. Physics makes the difference: Bayesian optimization and active learning via augmented Gaussian process. Mach. Learn. Sci. Technol. 3, 015003 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Donnelly, V. M. & Kornblit, A. Plasma etching: yesterday, today, and tomorrow. J. Vac. Sci. Technol. A 31, 050825 (2013).

    Article 

    Google Scholar
     

  • Huang, S. et al. Plasma etching of high aspect ratio features in SiO2 using Ar/C4F8/O2 mixtures: a computational investigation. J. Vac. Sci. Technol. A 37, 031304 (2019).

    Article 

    Google Scholar
     

  • Zheng, L., Ling, L., Hua, X., Oehrlein, G. S. & Hudson, E. A. Studies of film deposition in fluorocarbon plasmas employing a small gap structure. J. Vac. Sci. Technol. A 23, 634–642 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Coventor, Inc. SEMulator3D virtual fabrication software platform. http://www.coventor.com.

  • Steinbrüchel, C. Universal energy dependence of physical and ion-enhanced chemical etch yields at low ion energy. Appl. Phys. Lett. 55, 1960–1962 (1989).

    Article 
    ADS 

    Google Scholar
     

  • Knoll, A. J., Pranda, A., Lee, H. & Oehrlein, G. S. Substrate temperature effect on migration behavior of fluorocarbon film precursors in high-aspect ratio structures. J. Vac. Sci. Technol. B 37, 031802 (2019).

    Article 

    Google Scholar
     

  • Nelson, C. T., Sant, S. P., Overzet, L. J. & Goeckner, M. J. Surface kinetics with low ion energy bombardment in fluorocarbon plasmas. Plasma Sources Sci. Technol. 16, 813–821 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sethian, J. A. Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science (Cambridge Univ. Press, 1999).

  • Hamaguchi, S. & Dalvie, M. Microprofile simulations for plasma etching with surface passivation. J. Vac. Sci. Technol. A 12, 2745–2753 (1994).

    Article 
    CAS 

    Google Scholar
     

  • Hoekstra, R. J., Grapperhaus, M. J. & Kushner, M. J. Integrated plasma equipment model for polysilicon etch profiles in an inductively coupled plasma reactor with subwafer and superwafer topography. J. Vac. Sci. Technol. A 15, 1913–1921 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Source link