May 5, 2024
Increased Amazon carbon emissions mainly from decline in law enforcement – Nature

Increased Amazon carbon emissions mainly from decline in law enforcement – Nature

  • Brienen, R. J. W. et al. Long-term decline of the Amazon carbon sink. Nature 519, 344–348 (2015).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Phillips, O. L. & Brienen, R. J. W. Carbon uptake by mature Amazon forests has mitigated Amazon nations’ carbon emissions. Carbon Balance Manag. 12, 1 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hubau, W. et al. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579, 80–87 (2020).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Gatti, L. V. et al. Amazonia as a carbon source linked to deforestation and climate change. Nature 595, 388–393 (2021).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Gatti, L. V. et al. CO2 vertical profiles on four sites over Amazon from 2010 to 2018. PANGAEA https://doi.org/10.1594/PANGAEA.926834 (2021).

  • Gatti, L. V. et al. CO2 vertical profiles on four sites over Amazon from 2019 to 2020. PANGAEA https://doi.pangaea.de/10.1594/PANGAEA.949643 (2023).

  • PRODES. Amazon Deforestation Monitoring Project (PRODES/INPE). http://www.obt.inpe.br/OBT/assuntos/programas/amazonia/prodes (2022).

  • BDQueimadas. INPE Biomass burning Program. https://queimadas.dgi.inpe.br/queimadas/bdqueimadas (2022).

  • IBAMA MMA Brazilian Government. IBAMA field inspection and judgments data between 2010 and 2020. https://dados.gov.br/dados/conjuntos-dados/julgamentos-de-auto-de-infracao-realizado-no-ambito-do-ibama (2022).

  • Saatchi, S., Houghton, R. A., dos Santos Alvalá, R. C., Soares, J. V. & Yu, Y. Distribution of aboveground live biomass in the Amazon basin. Glob. Chang. Biol. 13, 816–837 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Malhi, Y. et al. in Amazon Assessment Report 2021 Ch. 6 (eds Nobre, C. et al.) (United Nations Sustainable Development Solutions Network, 2021).

  • Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A. & Totterdell, I. J. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408, 184–187 (2000).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Aragão, L. E. O. C. et al. 21st century drought-related fires counteract the decline of Amazon deforestation carbon emissions. Nat. Commun. 9, 536 (2018).

    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Nobre C. et al. (eds) Amazon Assessment Report 2021 (United Nations Sustainable Development Solutions Network, 2021).

  • Costa, M. H. & Pires, G. F. Effects of Amazon and Central Brazil deforestation scenarios on the duration of the dry season in the arc of deforestation. Int. J. Climatol. 30, 1970–1979 (2010).

    Article 

    Google Scholar
     

  • Costa, M. H. et al. in Amazon Assessment Report 2021 Ch. 7 (eds Nobre, C. et al.) (United Nations Sustainable Development Solutions Network, 2021).

  • Leite-Filho, A. T., Costa, M. H. & Fu, R. The southern Amazon rainy season: the role of deforestation and its interactions with large-scale mechanisms. Int. J. Climatol. 40, 2328–2341 (2020).

    Article 

    Google Scholar
     

  • Leite-Filho, A. T., Soares-Filho, B. S., Davis, J. L., Abrahão, G. M. & Börner, J. Deforestation reduces rainfall and agricultural revenues in the Brazilian Amazon. Nat. Commun. 12, 2591 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Barbosa, L. G., Alves, M. A. S. & Grelle, C. E. V. Actions against sustainability: dismantling of the environmental policies in Brazil. Land Use Policy 104, 105384 (2021).

    Article 

    Google Scholar
     

  • Alencar, A., Silvestrini, R., Gomes, J. & Savian, G. Amazon in flames: the new and alarming level of deforestation in the Amazon. Technical Note, IPAM – Amazon Environmental Research Institute, https://ipam.org.br/bibliotecas/amazon-in-flames-9-the-new-and-alarming-level-of-deforestation-in-the-amazon/ (2022).

  • Gatti, L. V. et al. in Amazon Assessment Report 2021 Cross Ch. 1 (eds Nobre, C. et al.) (United Nations Sustainable Development Solutions Network, 2021).

  • Silva Junior, C. H. L. et al. Persistent collapse of biomass in Amazonian forest edges following deforestation leads to unaccounted carbon losses. Sci. Adv. 6, eaaz8360 (2020).

    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Aguiar, A. P. D. et al. Land use change emission scenarios: anticipating a forest transition process in the Brazilian Amazon. Glob. Chang. Biol. 22, 1821–1840 (2016).

    Article 
    PubMed 
    ADS 

    Google Scholar
     

  • Assis, T. O. et al. CO2 emissions from forest degradation in Brazilian Amazon. Environ. Res. Lett. 15, 104035 (2020).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Feng, L. et al. Consistent regional fluxes of CH4 and CO2 inferred from GOSAT proxy XCH4:XCO2 retrievals, 2010–2014. Atmos. Chem. Phys. 17, 4781–4797 (2017).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Ministério da Indústria, Comércio Exterior e Serviços (MDIC). Comexstat. Wood exportation http://comexstat.mdic.gov.br/pt/comex-vis (accessed 8 July 2022).

  • Instituto Brasileiro de Geografia e Estatística (IBGE) Statistics, Brazilian Institute of Agriculture, Livestock and others. https://www.ibge.gov.br/estatisticas/economicas/agricultura-e-pecuaria/9117-producao-agricola-municipal-culturas-temporarias-e-permanentes.html?t=series-historicas (accessed 8 July 2022).

  • Instituto Brasileiro de Geografia e Estatística (IBGE). Cattle. https://sidra.ibge.gov.br/tabela/3939#resultado (accessed 8 July 2022).

  • Soares-Filho, B. et al. Cracking Brazil’s forest code. Science 344, 363–364 (2014).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Nepstad, D. et al. Slowing Amazon deforestation through public policy and interventions in beef and soy supply chains. Science 344, 1118–1123 (2014).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Soares-Filho, B. et al. Role of Brazilian Amazon protected areas in climate change mitigation. Proc. Natl Acad. Sci. 107, 10821–10826 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Ministério do Meio Ambiente (MMA). PPCDAm. http://redd.mma.gov.br/pt/acompanhamento-e-a-analise-de-impacto-das-politicas-publicas/ppcdam (2017).

  • Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis (IBAMA). Instrução Normativa 3, de 23 de janeiro de 2018 (regulatory instruction) (IBAMA, 2018).

  • West, T. A. P. & Fearnside, P. M. Brazil’s conservation reform and the reduction of deforestation in Amazonia. Land Use Policy 100, 105072 (2021).

    Article 

    Google Scholar
     

  • Hargrave, J. & Kis-Katos, K. Economic causes of deforestation in the Brazilian Amazon: a panel data analysis for the 2000s. Environ. Resour. Econ. 54, 471–494 (2013).

    Article 

    Google Scholar
     

  • Börner, J., Kis-Katos, K., Hargrave, J. & König, K. Post-crackdown effectiveness of field-based forest law enforcement in the Brazilian Amazon. PLoS One 10, e0121544 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Soares-Filho, B. et al. Brazil’s market for trading forest certificates. PLoS One 11, e0152311 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aragão, L. E. O. C. et al. Environmental change and the carbon balance of Amazonian forests. Biol. Rev. 89, 913–931 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Global Monitoring Laboratory. Trends in atmospheric carbon dioxide. https://gml.noaa.gov/ccgg/trends/gl_gr.html (accessed 8 July 2022).

  • Gloor, E. et al. Tropical land carbon cycle responses to 2015/16 El Niño as recorded by atmospheric greenhouse gas and remote sensing data. Philos. Trans. R. Soc. B Biol. Sci. 373, 20170302 (2018).

    Article 

    Google Scholar
     

  • Withey, K. et al. Quantifying immediate carbon emissions from El Niño-mediated wildfires in humid tropical forests. Philos. Trans. R. Soc. B Biol. Sci. 373, 20170312 (2018).

    Article 

    Google Scholar
     

  • NOAA/National Weather Service. Oceanic Niño Index (ONI). https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php (2022).

  • Gatti, L. V. et al. Drought sensitivity of Amazonian carbon balance revealed by atmospheric measurements. Nature 506, 76–80 (2014).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Eva, H. et al. A Proposal for Defining the Geographical Boundaries of Amazonia. ISBN 9279000128 (2005).

  • Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience 51, 933–938 (2001).

    Article 

    Google Scholar
     

  • Miller, J. B. et al. Airborne measurements indicate large methane emissions from the eastern Amazon basin. Geophys. Res. Lett. 34, L10809 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Gatti, L. V. et al. Vertical profiles of CO2 above eastern Amazonia suggest a net carbon flux to the atmosphere and balanced biosphere between 2000 and 2009. Tellus B Chem. Phys. Meteorol. 62, 581–594 (2010).

    Article 
    ADS 

    Google Scholar
     

  • D’Amelio, M. T. S., Gatti, L. V., Miller, J. B. & Tans, P. Regional N2O fluxes in Amazonia derived from aircraft vertical profiles. Atmos. Chem. Phys. 9, 8785–8797 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Basso, L. S. et al. Seasonality and interannual variability of CH4 fluxes from the eastern Amazon Basin inferred from atmospheric mole fraction profiles. J. Geophys. Res. Atmos. 121, 168–184 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Basso, L. S. et al. Amazon methane budget derived from multi-year airborne observations highlights regional variations in emissions. Commun. Earth Environ. 2, 246 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Draxler, R. R. & Rolph, G. D. HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory). NOAA Air Resources Laboratory (2003).

  • Stein, A. F. et al. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Am. Meteorol. Soc. 96, 2059–2077 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Domingues, L. G. et al. A new background method for greenhouse gases flux calculation based in back-trajectories over the Amazon. Atmosphere 11, 734 (2020).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Lan, X. et al. Atmospheric carbon dioxide dry air mole fractions from the NOAA GML carbon cycle cooperative global air sampling network, 1968–2021. Version: 2022-11-21, https://doi.org/10.15138/wkgj-f215 (2022).

  • Quadratic mean, ({bar{x}}_{q}). in The IUPAC Compendium of Chemical Terminology. https://doi.org/10.1351/goldbook (International Union of Pure and Applied Chemistry, 2014).

  • Baier, B. C. et al. Multispecies assessment of factors influencing regional CO2 and CH4 enhancements during the winter 2017 ACT‐America campaign. J. Geophys. Res. Atmos. 27, e2019JD031339 (2020).

    ADS 

    Google Scholar
     

  • Jiang, N. & Riley, M. L. Exploring the utility of the random forest method for forecasting ozone pollution in SYDNEY. J. Environ. Protect. Sustain. Develop. 1, 245–254 (2015).


    Google Scholar
     

  • Stekhoven, D. J. & Buhlmann, P. MissForest—non-parametric missing value imputation for mixed-type data. Bioinformatics 28, 112–118 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • R Core Team. R: A Language and Environment for Statistical Computing. https://www.R-project.org (R Foundation for Statistical Computing, 2020).

  • Stekhoven, D. J. missForest: nonparametric missing value imputation using random forest. R package version 1.4 (2013).

  • Cassol, H. L. G. et al. Determination of region of influence obtained by aircraft vertical profiles using the density of trajectories from the HYSPLIT model. Atmosphere 11, 1073 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Rolph, G., Stein, A. & Stunder, B. Real-time Environmental Applications and Display sYstem: READY. Environ. Model. Softw. 95, 210–228 (2017).

    Article 

    Google Scholar
     

  • Huffman, G. J. et al. Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrometeorol. 2, 36–50 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Watkins, M. M., Wiese, D. N., Yuan, D.-N., Boening, C. & Landerer, F. W. Improved methods for observing Earth’s time variable mass distribution with GRACE using spherical cap mascons. J. Geophys. Res. Solid Earth 120, 2648–2671 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Wiese, D. N., Yuan, D.-N., Boening, C., Landerer, F. W. & Watkins, M. M. JPL GRACE and GRACE-FO Mascon Ocean, Ice, and Hydrology Equivalent Water Height CRI Filtered. Ver. RL06Mv02. https://doi.org/10.5067/TEMSC-3JC62 (2019).

  • Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 5, 170191 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Giglio, L., Boschetti, L., Roy, D. P., Humber, M. L. & Justice, C. O. The Collection 6 MODIS burned area mapping algorithm and product. Remote Sens. Environ. 217, 72–85 (2018).

    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Brennan, J., Gómez-Dans, J. L., Disney, M. & Lewis, P. Theoretical uncertainties for global satellite-derived burned area estimates. Biogeosciences 16, 3147–3164 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Vermote, E. F., El Saleous, N. Z. & Justice, C. O. Atmospheric correction of MODIS data in the visible to middle infrared: first results. Remote Sens. Environ. 83, 97–111 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Justice, C. et al. An overview of MODIS Land data processing and product status. Remote Sens. Environ. 83, 3–15 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Friedl, M. A. et al. MODIS Collection 5 global land cover: algorithm refinements and characterization of new datasets. Remote Sens. Environ. 114, 168–182 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Dalagnol, R., Wagner, F. H., Galvão, L. S., Oliveira, L. E. & Aragao, C. The MANVI product: MODIS (MAIAC) nadir-solar adjusted vegetation indices (EVI and NDVI) for South America. Zenodo https://doi.org/10.5281/zenodo.3159488 (2019).

  • Almeida, C. T., Oliveira-Júnior, J. F., Delgado, R. C., Cubo, P. & Ramos, M. C. Spatiotemporal rainfall and temperature trends throughout the Brazilian Legal Amazon, 1973–2013. Int. J. Climatol. 37, 2013–2026 (2017).

    Article 

    Google Scholar
     

  • Almeida, C. A. et al. Methodology for forest monitoring used in PRODES and DETER projects. INPE, http://urlib.net/rep/8JMKD3MGP3W34R/443H3RE (2021).

  • Maurano, L. E. P., Escada, M. I. S. & Renno, C. D. Padrões espaciais de desmatamento e a estimativa da exatidão dos mapas do PRODES para Amazônia Legal Brasileira. Ciênc. Florest. 29, 1763–1775 (2019).

    Article 

    Google Scholar
     

  • Wooster, M. J. et al. Satellite remote sensing of active fires: history and current status, applications and future requirements. Remote Sens. Environ. 267, 112694 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Setzer, A. W., Ferreira, N. J. & Morelli, F. in Queimadas e Incêndios Florestais: Mediante Monitoramento Orbital Ch. 1 (Oficina de Textos, 2021).

  • Global Observations of Forest Cover and Land-use Dynamics (GOFC-GOLD). https://gofcgold.org/ (accessed 8 July 2022).

  • Fire Information for Resource Management System (FIRMS). NASA https://www.earthdata.nasa.gov/learn/find-data/near-real-time/firms (accessed 8 July 2022).

  • Sofan, P., Yulianto, F. & Sakti, A. D. Characteristics of false-positive active fires for biomass burning monitoring in Indonesia from VIIRS data and local geo-features. ISPRS Int. J. Geo-Inf. 11, 601 (2022).

    Article 

    Google Scholar
     

  • MMA. Balanço de execução: PPCDAm e PPCerrado 2016–2020. http://combateaodesmatamento.mma.gov.br/images/Doc_ComissaoExecutiva/Balano-PPCDAm-e-PPCerrado_2019_aprovado.pdf (2020).

  • Source link