May 5, 2024
Indian Ocean salinity build-up primes deglacial ocean circulation recovery – Nature

Indian Ocean salinity build-up primes deglacial ocean circulation recovery – Nature

  • Beal, L. M. et al. On the role of the Agulhas system in ocean circulation and climate. Nature 472, 429–436 (2011).

  • Biastoch, A., Böning, C. W., Schwarzkopf, F. U. & Lutjeharms, J. R. E. Increase in Agulhas Leakage due to poleward shift of Southern Hemisphere westerlies. Nature 462, 495–498 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Knorr, G. & Lohmann, G. Southern Ocean origin for the resumption of Atlantic thermohaline circulation during deglaciation. Nature 424, 532–536 (2003).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sprintall, J., Wijffels, S. E., Molcard, R. & Jaya, I. Direct estimates of the indonesian throughflow entering the Indian Ocean: 2004–2006. J. Geophys. Res. Oceans https://doi.org/10.1029/2008JC005257 (2009).

  • Sengupta, D., Bharath Raj, G. N. & Shenoi, S. S. C. Surface freshwater from Bay of Bengal runoff and Indonesian Throughflow in the tropical Indian Ocean. Geophys. Res. Lett. https://doi.org/10.1029/2006GL027573 (2006).

  • Talley, L. D. & Sprintall, J. Deep expression of the Indonesian Throughflow: Indonesian Intermediate Water in the South Equatorial Current. J. Geophys. Res. 110, C10009 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Gordon, A. L. et al. Advection and diffusion of Indonesian Throughflow Water within the Indian Ocean South Equatorial Current. Geophys. Res. Lett. 24, 2573–2576 (1997).

    Article 
    ADS 

    Google Scholar
     

  • Durgadoo, J. V., Rühs, S., Biastoch, A. & Böning, C. W. B. Indian Ocean sources of Agulhas Leakage. J. Geophys. Res. Oceans. 122, 3481–3499 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Gray, W. R. & Evans, D. Nonthermal Influences on Mg/Ca in planktonic foraminifera: a review of culture studies and application to the Last Glacial Maximum. Paleoceanogr. Paleoclimatol. 34, 306–315 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Kiefer, T., McCave, I. N. & Elderfield, H. Antarctic control on tropical Indian Ocean sea surface temperature and hydrography. Geophys. Res. Lett. 33, L24612 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Waelbroeck, C. et al. A global compilation of late Holocene planktonic foraminiferal δ18O: relationship between surface water temperature and δ18O. Quat. Sci. Rev. 24, 853–868 (2005).

    Article 
    ADS 

    Google Scholar
     

  • DiNezio, P. N. et al. Glacial changes in tropical climate amplified by the Indian Ocean. Sci. Adv. https://doi.org/10.1126/sciadv.aat9658 (2018).

  • Thirumalai, K., DiNezio, P. N., Tierney, J. E., Puy, M. & Mohtadi, M. An El Niño mode in the glacial Indian Ocean? Paleoceanogr. Paleoclimatol. 34, 1316–1327 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Clemens, S. C. et al. Remote and local drivers of Pleistocene South Asian summer monsoon precipitation: a test for future predictions. Sci. Adv. 7, eabg3848 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nilsson-Kerr, K., Anand, P., Sexton, P. F., Leng, M. J. & Naidu, P. D. Indian summer monsoon variability 140–70 thousand years ago based on multi-proxy records from the Bay of Bengal. Quat. Sci. Rev. 279, 107403 (2022).

    Article 

    Google Scholar
     

  • Ishikawa, S. & Oda, M. Reconstruction of Indian monsoon variability over the past 230,000 years: planktic foraminiferal evidence from the NW Arabian Sea open-ocean upwelling area. Mar. Micropaleontol. 63, 143–154 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Kumar, K. P. & Ramesh, R. Revisiting reconstructed Indian monsoon rainfall variations during the last 25 ka from planktonic foraminiferal δ18O from the Eastern Arabian Sea. Quat. Int. 443, 29–38 (2017).

    Article 

    Google Scholar
     

  • Hanebuth, T. J. J. & Stattegger, K. Depositional sequences on a late Pleistocene–Holocene tropical siliciclastic shelf (Sunda Shelf, Southeast Asia). J. Asian Earth Sci. 23, 113–126 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Kudrass, H. R. & Schlüter, H. U. Development of cassiterite-bearing sediments and their relation to late Pleistocene sea-level changes in the Straits of Malacca. Mar. Geol. 120, 175–202 (1994).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Petrick, B. et al. Glacial Indonesian Throughflow weakening across the Mid-Pleistocene climatic transition. Sci. Rep. https://doi.org/10.1038/s41598-019-53382-0 (2019).

  • Hanebuth, T. J. J., Voris, H. K., Yokoyama, Y., Saito, Y. & Okuno, J. Formation and fate of sedimentary depocentres on Southeast Asia’s Sunda Shelf over the past sea-level cycle and biogeographic implications. Earth Sci. Rev. 104, 92–110 (2011).

    Article 
    ADS 

    Google Scholar
     

  • de Boer, B., Stocchi, P. & van de Wal, R. S. W. A fully coupled 3-D ice-sheet–sea-level model: algorithm and applications. Geosci. Model Dev. 7, 2141–2156 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Holbourn, A., Kuhnt, W. & Xu, J. Indonesian Throughflow variability during the last 140 ka: the Timor Sea outflow. Geol. Soc. Spec. Publ. 355, 283–303 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Gordon, A. L., Susanto, R. D. & Vranes, K. Cool Indonesian throughflow as a consequence of restricted surface layer flow. Nature 425, 824–828 (2003).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sarr, A. C. et al. Subsiding Sundaland. Geology 47, 119–122 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Simon, M. H. et al. Millennial-scale Agulhas Current variability and its implications for salt-leakage through the Indian–Atlantic Ocean gateway. Earth Planet. Sci. Lett. 383, 101–112 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Dickson, A. J. et al. Atlantic overturning circulation and Agulhas Leakage influences on Southeast Atlantic upper ocean hydrography during Marine Isotope Stage 11. Paleoceanography https://doi.org/10.1029/2009PA001830 (2010).

  • Peeters, F. J. C. et al. Vigorous exchange between the Indian and Atlantic oceans at the end of the past five glacial periods. Nature 430, 661–665 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Caley, T., Giraudeau, J., Malaizé, B., Rossignol, L. & Pierre, C. Agulhas Leakage as a key process in the modes of Quaternary climate changes. Proc. Natl Acad. Sci. USA 109, 6835–6839 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bard, E. & Rickaby, R. E. M. Migration of the subtropical front as a modulator of glacial climate. Nature 460, 380–383 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • De Boer, A. M., Graham, R. M., Thomas, M. D. & Kohfeld, K. E. The control of the Southern Hemisphere westerlies on the position of the Subtropical Front. J. Geophys. Res. Oceans. 118, 5669–5675 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Marino, G. et al. Agulhas salt-leakage oscillations during abrupt climate changes of the late Pleistocene. Paleoceanography. 28, 599–606 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, X., Lohmann, G., Knorr, G. & Xu, X. Different ocean states and transient characteristics in Last Glacial Maximum simulations and implications for deglaciation. Clim. Past 9, 2319–2333 (2013).

    Article 

    Google Scholar
     

  • Lauvset, S. K. et al. An updated version of the global interior ocean biogeochemical data product, GLODAPv2.2021. Earth Syst. Sci. Data Discuss. https://doi.org/10.5194/essd-2021-234 (2021)

  • Weatherall, P. et al. A new digital bathymetric model of the world’s oceans. Earth Space Sci. 2, 331–345 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Schlitzer, R. Ocean Data View https://odv.awi.de (2021).

  • Pierre, C., Saliège, J. F., Urrutiaguer, M. J., & Giraudeau, J. Stable isotope record of benthic and planktonic foraminifera from ODP Site 175-1087 in the southern Cape Basin, Atlantic Ocean. PANGAEA https://doi.org/10.1594/PANGAEA.701338 (2001).

  • Martinez-Mendez, G. et al. Contrasting multiproxy reconstructions of surface ocean hydrography in the Agulhas Corridor and implications for the Agulhas Leakage during the last 345,000 years. Paleoceanography https://doi.org/10.1029/2009PA001879 (2010).

  • Caley, T. et al. High-latitude obliquity as a dominant forcing in the Agulhas current system. Clim. Past 7, 1285–1296 (2011).

    Article 

    Google Scholar
     

  • Barker, S., Greaves, M. & Elderfield, H. A study of cleaning procedures used for foraminiferal Mg/Ca paleothermometry. Geochem. Geophys. Geosyst. 4, 8407 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Rostek, F., Bard, E., Beaufort, L., Sonzogni, C. & Ganssen, G. Sea surface temperature and productivity records for the last 240 kyr on the Arabian Sea. Deep Sea Res. Part II 44, 1461–1480 (1997).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bassinot, F. C. et al. Coarse fraction fluctuations in pelagic carbonate sediments from the tropical Indian Ocean: a 1500-kyr record of carbonate dissolution. Paleoceanography. 9, 579–600 (1994).

    Article 
    ADS 

    Google Scholar
     

  • Mohtadi, M. et al. Late Pleistocene surface and thermocline conditions of the eastern tropical Indian Ocean. Quat. Sci. Rev. 29, 887–896 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Xu, J., Holbourn, A., Kuhnt, W., Jian, Z. & Kawamura, H. Changes in the thermocline structure of the Indonesian outflow during terminations I and II. Earth Planet. Sci. Lett. 273, 152–162 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zuraida, R. et al. Evidence for Indonesian Throughflow slowdown during Heinrich events 3–5. Paleoceanography 24, PA2205 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Herbert, T. D., Peterson, L. C., Lawrence, K. T. & Liu, Z. Tropical ocean temperatures over the past 3.5 million years. Science 328, 1530–1534 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • De Garidel-Thoron, T., Rosenthal, Y., Bassinot, F. & Beaufort, L. Stable sea surface temperatures in the western Pacific warm pool over the past 1.75 million years. Nature 433, 294–298 (2005).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Lisiecki, L. E. & Raymo, M. E. A Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography https://doi.org/10.1029/2004PA001071 (2005).

  • de Boer, B., Lourens, L. J. & Van De Wal, R. S. W. Persistent 400,000-year variability of Antarctic ice volume and the carbon cycle is revealed throughout the Plio–Pleistocene. Nat. Commun. https://doi.org/10.1038/ncomms3999 (2014).

  • Braconnot, P. et al. Evaluation of climate models using palaeoclimatic data. Nat. Clim. Change 2, 417–424 (2012). 2012 2:6.

    Article 
    ADS 

    Google Scholar
     

  • van der Lubbe, H. J. L. et al. Indo-Pacific Walker circulation drove Pleistocene African aridification. Nature 598, 618–623 (2021).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Ahn, S., Khider, D., Lisiecki, L. E. & Lawrence, C. E. A probabilistic Pliocene–Pleistocene stack of benthic δ18O using a profile hidden Markov model. Dyn. Stat. Clim. Syst. https://doi.org/10.1093/climsys/dzx002 (2017).

  • Bereiter, B. et al. Revision of the EPICA Dome C CO2 record from 800 to 600 kyr before present. Geophys. Res. Lett. 42, 542–549 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Bouvier-Soumagnac, Y. & Duplessy, J.-C. Carbon and oxygen isotopic composition of planktonic foraminifera from laboratory culture, plankton tows and recent sediment; implications for the reconstruction of paleoclimatic conditions and of the global carbon cycle. J. Foraminifer. Res. 15, 302–320 (1985).

    Article 

    Google Scholar
     

  • Pearson, P. N. Oxygen isotopes in foraminifera: overview and historical review. Paleontol. Soc. Pap. 18, 1–38 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Howell, P., Pisias, N., Ballance, J., Baughman, J. & Ochs, L. ARAND. GitHub https://github.com/jesstierney/arand (2006).

  • Spratt, R. M. & Lisiecki, L. E. A late Pleistocene sea level stack. Clim. Past 12, 1079–1092 (2016).

    Article 

    Google Scholar
     

  • Laskar, J. et al. A long-term numerical solution for the insolation quantities of the Earth. Astron. Astrophys. 428, 261–285 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Johnson, T. C. et al. A progressively wetter climate in southern East Africa over the past 1.3 million years. Nature 537, 220–224 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kathayat, G. et al. Indian monsoon variability on millennial-orbital timescales. Sci. Rep. 6, 24374 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng, H. et al. The Asian monsoon over the past 640,000 years and ice age terminations. Nature 534, 640–646 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • de Boer, B., van de Wal, R. S. W., Lourens, L. J., Bintanja, R. & Reerink, T. J. A continuous simulation of global ice volume over the past 1 million years with 3-D ice-sheet models. Clim. Dyn. 41, 1365–1384 (2013).

    Article 

    Google Scholar
     

  • Elderfield, H. et al. Evolution of ocean temperature and ice volume through the mid-Pleistocene climate transition. Science 337, 704–709 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Shackleton, N. J. Oxygen isotopes, ice volume and sea level. Quat. Sci. Rev. 6, 183–190 (1987).

    Article 
    ADS 

    Google Scholar
     

  • Grant, K. M. et al. Sea-level variability over five glacial cycles. Nat. Commun. 5, 5076 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, P., Tian, J. & Lourens, L. J. Obscuring of long eccentricity cyclicity in Pleistocene oceanic carbon isotope records. Earth Planet. Sci. Lett. 290, 319–330 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Cartopy: A Cartographic Python Library with A Matplotlib Interface (UK Met Office, 2010).

  • Natural Earth: Free Vector and Raster Map Data www.naturalearthdata.com (2015).

  • Source link