May 19, 2024

Indo-Pacific Walker circulation drove Pleistocene African aridification – Nature

  • 1.

    Saji, N., Goswami, B., Vinayachandran, P. & Yamagata, T. A dipole mode in the tropical Indian Ocean. Nature 401, 360–363 (1999).

    ADS 
    CAS 

    Google Scholar
     

  • 2.

    Tierney, J. E., Smerdon, J. E., Anchukaitis, K. J. & Seager, R. Multidecadal variability in East African hydroclimate controlled by the Indian Ocean. Nature 493, 389–392 (2013).

    ADS 
    CAS 

    Google Scholar
     

  • 3.

    Kaboth-Bahr, S. et al. Paleo-ENSO influence on African environments and early modern humans. Proc. Natl Acad. Sci. USA 118, e2018277118 (2021).

    CAS 

    Google Scholar
     

  • 4.

    Maslin, M. A. et al. East African climate pulses and early human evolution. Quat. Sci. Rev. 101, 1–17 (2014).

    ADS 

    Google Scholar
     

  • 5.

    Trauth, M. H., Larrasoana, J. C. & Mudelsee, M. Trends, rhythms and events in Plio–Pleistocene African climate. Quat. Sci. Rev. 28, 399–411 (2009).

    ADS 

    Google Scholar
     

  • 6.

    Etourneau, J., Schneider, R., Blanz, T. & Martinez, P. Intensification of the Walker and Hadley atmospheric circulations during the Pliocene–Pleistocene climate transition. Earth Planet. Sci. Lett. 297, 103–110 (2010).

    ADS 
    CAS 

    Google Scholar
     

  • 7.

    Ravelo, A. C., Andreasen, D. H., Lyle, M., Olivarez Lyle, A. & Wara, M. W. Regional climate shifts caused by gradual global cooling in the Pliocene epoch. Nature 429, 263–267 (2004).

    ADS 
    CAS 

    Google Scholar
     

  • 8.

    Mudelsee, M. & Schulz, M. The Mid-Pleistocene climate transition: onset of 100 ka cycle lags ice volume build-up by 280 ka. Earth Planet. Sci. Lett. 151, 117–123 (1997).

    ADS 
    CAS 

    Google Scholar
     

  • 9.

    Hermes, J. & Reason, C. Annual cycle of the South Indian Ocean (Seychelles‐Chagos) thermocline ridge in a regional ocean model. J. Geophys. Res. Oceans 113, 1–10 (2008).


    Google Scholar
     

  • 10.

    Rao, S. A. & Behera, S. K. Subsurface influence on SST in the tropical Indian Ocean: structure and interannual variability. Dyn. Atmos. Oceans 39, 103–135 (2005).

    ADS 

    Google Scholar
     

  • 11.

    Nicholson, S. E. Climate and climatic variability of rainfall over eastern Africa. Rev. Geophys. 55, 590–635 (2017).

    ADS 

    Google Scholar
     

  • 12.

    deMenocal, P. B. African climate change and faunal evolution during the Pliocene–Pleistocene. Earth Planet. Sci. Lett. 220, 3–24 (2004).

    ADS 
    CAS 

    Google Scholar
     

  • 13.

    Levin, N. E. Environment and climate of early human evolution. Annu. Rev. Earth Planet. Sci.43, 405–429 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • 14.

    Hall I. R. et al. South African Climates (Agulhas LGM Density Profile) (International Ocean Discovery Program, 2017).

  • 15.

    Ullgren, J., van Aken, H., Ridderinkhof, H., De, Ruijter, W. The hydrography of the Mozambique Channel from six years of continuous temperature, salinity, and velocity observations. Deep Sea Res. I 69, 36–50 (2012).


    Google Scholar
     

  • 16.

    Backeberg, B. C. & Reason, C. J. C. A connection between the South Equatorial Current north of Madagascar and Mozambique Channel eddies. Geophys. Res. Lett. 37, 1–6 (2010).


    Google Scholar
     

  • 17.

    Makarim, S. et al. Previously unidentified Indonesian Throughflow pathways and freshening in the Indian Ocean during recent decades. Sci. Rep. 9, 7364 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 18.

    Backeberg, B. C., Penven, P. & Rouault, M. Impact of intensified Indian Ocean winds on mesoscale variability in the Agulhas system. Nat. Clim. Change 2, 608–612 (2012).

    ADS 

    Google Scholar
     

  • 19.

    Paris, M. L., Subrahmanyam, B., Trott, C. B. & Murty, V. S. N. Influence of ENSO events on the Agulhas leakage region. Remote Sens. Earth Syst. Sci. 1, 79–88 (2018).


    Google Scholar
     

  • 20.

    Palastanga, V., Van Leeuwen, P. & De, Ruijter, W. A link between low‐frequency mesoscale eddy variability around Madagascar and the large‐scale Indian Ocean variability. J. Geophys. Res. Oceans 111, 1–15 (2006).


    Google Scholar
     

  • 21.

    Ridderinkhof, H. et al Seasonal and interannual variability in the Mozambique Channel from moored current observations. J. Geophys. Res. Oceans 115, 1–18 (2010).


    Google Scholar
     

  • 22.

    Ridderinkhof, W., Le Bars, D., Von der Heydt, A. & De, Ruijter, W. Dipoles of the south east Madagascar Current. Geophys. Res. Lett. 40, 558–562 (2013).

    ADS 

    Google Scholar
     

  • 23.

    Yamagami, Y. & Tozuka, T. Interannual variability of South Equatorial Current bifurcation and western boundary currents along the Madagascar coast. J. Geophys. Res. Oceans 120, 8551–8570 (2015).

    ADS 

    Google Scholar
     

  • 24.

    Jin, X. et al. Influences of Pacific climate variability on decadal subsurface ocean heat content variations in the Indian Ocean. J. Clim. 31, 4157–4174 (2018).

    ADS 

    Google Scholar
     

  • 25.

    van Oldenborgh, G. J., Doblas-Reyes, F. J., Wouters, B. & Hazeleger, W. Decadal prediction skill in a multi-model ensemble. Clim. Dyn. 38, 1263–1280 (2012).


    Google Scholar
     

  • 26.

    Herbert, T. D. et al. Late Miocene global cooling and the rise of modern ecosystems. Nat. Geosci. 9, 843–847 (2016).

    ADS 
    CAS 

    Google Scholar
     

  • 27.

    Groeneveld, J. et al. Australian shelf sediments reveal shifts in Miocene Southern Hemisphere westerlies. Sci. Adv. 3, 1–9 (2017).


    Google Scholar
     

  • 28.

    Liu, J. et al. Eastern equatorial Pacific cold tongue evolution since the late Miocene linked to extratropical climate. Sci. Adv. 5, 1–7 (2019).

    ADS 

    Google Scholar
     

  • 29.

    Fedorov, A. et al. Patterns and mechanisms of early Pliocene warmth. Nature 496, 43–49 (2013).

    ADS 
    CAS 

    Google Scholar
     

  • 30.

    Haug, G. H., Tiedemann, R., Zahn, R. & Ravelo, A. C. Role of Panama uplift on oceanic freshwater balance. Geology 29, 207–210 (2001).

    ADS 
    CAS 

    Google Scholar
     

  • 31.

    Brierley, C. M. et al. Greatly expanded tropical warm pool and weakened Hadley circulation in the Early Pliocene. Science 323, 1714–1718 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 32.

    Tierney, J. E., Haywood, A. M., Feng, R., Bhattacharya, T. & Otto-Bliesner, B. L. Pliocene warmth consistent with greenhouse gas forcing. Geophys. Res. Lett. 46, 9136–9144 (2019).

    ADS 

    Google Scholar
     

  • 33.

    Cane, M. A. & Molnar, P. Closing of the Indonesian seaway as a precursor to east African aridification around 3–4 million years ago. Nature 411, 157–162 (2001).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 34.

    Petrick, B. et al. Glacial Indonesian Throughflow weakening across the Mid-Pleistocene climatic transition. Sci. Rep. 9, 16995 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 35.

    Karas, C. et al. Mid-Pliocene climate change amplified by a switch in Indonesian subsurface throughflow. Nat. Geosci. 2, 434–438 (2009).

    ADS 
    CAS 

    Google Scholar
     

  • 36.

    Karas, C., Nürnberg, D., Tiedemann, R. & Garbe-Schönberg, D. Pliocene Indonesian Throughflow and Leeuwin Current dynamics: implications for Indian Ocean polar heat flux. Paleoceanography 26, PA2217 (2011).

    ADS 

    Google Scholar
     

  • 37.

    Christensen, B. A. et al. Indonesian Throughflow drove Australian climate from humid Pliocene to arid Pleistocene. Geophys. Res. Lett. 44, 6914–6925 (2017).

    ADS 

    Google Scholar
     

  • 38.

    Chen, Z., Wu, L., Qiu, B., Sun, S. & Jia, F. Seasonal variation of the South Equatorial Current bifurcation off Madagascar. J. Phys. Oceanogr. 44, 618–631 (2014).

    ADS 

    Google Scholar
     

  • 39.

    Rippert, N., Baumann, K.-H. & Pätzold, J. Thermocline fluctuations in the western tropical Indian Ocean during the past 35 ka. J. Quat. Sci. 30, 201–210 (2015).


    Google Scholar
     

  • 40.

    Ahn, S., Khider, D., Lisiecki, L. E. & Lawrence, C. A probabilistic Pliocene–Pleistocene stack of benthic δ18O using a profile hidden Markov model. Dyn. Stat. Clim. Syst. 2, 1–16 (2017).


    Google Scholar
     

  • 41.

    Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 42.

    Ravelo, A. C., Lawrence, K. T., Fedorov, A. & Ford, H. L. Comment on “A 12-million-year temperature history of the tropical Pacific Ocean”. Science 346, 1467 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • 43.

    Wara, M. W., Ravelo, A. C. & Delaney, M. L. Permanent El Niño-like conditions during the Pliocene warm period. Science 309, 758–761 (2005).

    ADS 
    CAS 

    Google Scholar
     

  • 44.

    Bjerknes, J. Atmospheric teleconnections from the equatorial Pacific. Mon. Weather Rev. 97, 163–172 (1969).

    ADS 

    Google Scholar
     

  • 45.

    Emeis, K.-C., Anderson, D. M., Doose, H., Kroon, D., Schulz-Bull, D. Sea-surface temperatures and the history of monsoon upwelling in the northwest Arabian Sea during the last 500,000 years. Quat. Res. 43, 355–361 (1995).


    Google Scholar
     

  • 46.

    Herbert, T. D., Peterson, L. C., Lawrence, K. T. & Liu, Z. Tropical ocean temperatures over the past 3.5 million years. Science 328, 1530–1534 (2010).

    ADS 
    CAS 

    Google Scholar
     

  • 47.

    Bobe, R. & Behrensmeyer, A. K. The expansion of grassland ecosystems in Africa in relation to mammalian evolution and the origin of the genus Homo. Palaeogeogr. Palaeoclimatol. Palaeoecol. 207, 399–420 (2004).


    Google Scholar
     

  • 48.

    Kiefer, T., McCave, I. N. & Elderfield, H. Antarctic control on tropical Indian Ocean sea surface temperature and hydrography. Geophys. Res. Lett. 33, 1–5 (2006).


    Google Scholar
     

  • 49.

    Mohtadi, M., Prange, M., Schefuß, E. & Jennerjahn, T. C. Late Holocene slowdown of the Indian Ocean Walker circulation. Nat. Commun. 8, 1015 (2017).

    CAS 

    Google Scholar
     

  • 50.

    Faith J. T. et al. Rethinking the ecological drivers of hominin evolution. Trends Ecol. Evol. 36, 797–807 (2021).

  • 51.

    Hall I. R., Hemming S. R. & LeVay L. J. South African Climates (Agulhas LGM Density Profile) (2016).

  • 52.

    Konert, M. & Vandenberghe, J. Comparison of laser grain size analysis with pipette and sieve analysis: a solution for the underestimation of the clay fraction. Sedimentology 44, 523–535 (1997).

    ADS 
    CAS 

    Google Scholar
     

  • 53.

    Van der Lubbe, H. et al. Sedimentation patterns off the Zambezi River over the last 20,000 years. Mar. Geol. 355, 189–201 (2014).

    ADS 

    Google Scholar
     

  • 54.

    McCave, I. & Andrews, J. Distinguishing current effects in sediments delivered to the ocean by ice. I. Principles, methods and examples. Quat. Sci. Rev. 212, 92–107 (2019).

    ADS 

    Google Scholar
     

  • 55.

    Weltje, G. J. & Tjallingii, R. Calibration of XRF core scanners for quantitative geochemical logging of sediment cores: theory and application. Earth Planet. Sci. Lett. 274, 423–438 (2008).

    ADS 
    CAS 

    Google Scholar
     

  • 56.

    Miramontes, E. et al. The influence of bottom currents on the Zambezi Valley morphology (Mozambique Channel, SW Indian Ocean): in situ current observations and hydrodynamic modelling. Mar. Geol. 410, 42–55 (2019).

    ADS 

    Google Scholar
     

  • 57.

    Starr, A. et al. Antarctic icebergs reorganize ocean circulation during Pleistocene glacials. Nature 589, 236-241 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • 58.

    Anthonissen, D. E. & Ogg, J. G. in The Geologic Time Scale (eds Gradstein, F. M. et al.) 1083–1127 (Elsevier, 2012).

  • 59.

    Tangunan, D. N. et al. The last 1 million years of the extinct genus Discoaster: Plio–Pleistocene environment and productivity at Site U1476 (Mozambique Channel). Palaeogeogr. Palaeoclimatol. Palaeoecol. 505, 187–197 (2018).


    Google Scholar
     

  • 60.

    Lougheed, B. C. & Obrochta, S. P. A rapid, deterministic age-depth modeling routine for geological sequences with inherent depth uncertainty. Paleoceanogr. Paleoclimatol. 34, 122–133 (2019).

    ADS 

    Google Scholar
     

  • 61.

    Mudelsee, M. Ramp function regression: a tool for quantifying climate transitions. Comput. Geosci. 26, 293–307 (2000).

    ADS 

    Google Scholar
     

  • 62.

    Huang, Y., Clemens, S. C., Liu, W., Wang, Y. & Prell, W. L. Large-scale hydrological change drove the late Miocene C4 plant expansion in the Himalayan foreland and Arabian Peninsula. Geology 35, 531–534 (2007).

    ADS 
    CAS 

    Google Scholar
     

  • 63.

    Schott, F. A., Xie, S. P. & McCreary, J. P. Jr Indian Ocean circulation and climate variability. Rev. Geophys. 47, 1–46 (2009).


    Google Scholar
     

  • 64.

    McCreary, J. P., Kundu, P. K. & Molinari, R. L. A numerical investigation of dynamics, thermodynamics and mixed-layer processes in the Indian Ocean. Prog. Oceanogr. 31, 181–244 (1993).

    ADS 

    Google Scholar
     

  • 65.

    Centenary Edition of the GEBCO Digital Atlas (IOC, IHO, BODC, 2003).

  • 66.

    Mulet, S. et al. The new CNES-CLS18 global mean dynamic topography. Ocean Sci. Discuss. 2021, 1–31 (2021).


    Google Scholar
     

  • 67.

    Putrasahan, D., Kirtman, B. P. & Beal, L. M. Modulation of SST interannual variability in the Agulhas leakage region associated with ENSO. J. Clim. 29, 7089–7102 (2016).

    ADS 

    Google Scholar
     

  • 68.

    Abram, N. J. et al. Coupling of Indo-Pacific climate variability over the last millennium. Nature 579, 385–392 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • 69.

    Rayner, N. A. et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. Atmos. 108, 1–29 (2003).


    Google Scholar
     

  • 70.

    McCave, I., Thornalley, D. & Hall, I. Relation of sortable silt grain-size to deep-sea current speeds: calibration of the ‘mud current meter’. Deep Sea Res. I 127, 1–2 (2017).


    Google Scholar
     

  • 71.

    McCave, I. N., Manighetti, B. & Robinson, S. G. Sortable silt and fine sediment size/composition slicing: parameters for palaeocurrent speed and palaeoceanography. Paleoceanography 10, 593–610 (1995).

    ADS 

    Google Scholar
     

  • 72.

    van Aken, H. M., Ridderinkhof, H. & de Ruijter, W. P. North Atlantic deep water in the south-western Indian Ocean. Deep Sea Res. I 51, 755–776 (2004).


    Google Scholar
     

  • 73.

    Ridderinkhof, H. & De Ruijter, W. Moored current observations in the Mozambique Channel. Deep Sea Res. II 50, 1933–1955 (2003).

    ADS 

    Google Scholar
     

  • 74.

    Lisiecki, L. E., Raymo, M. E. A Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, PA1003 (2005).

    ADS 

    Google Scholar
     

  • 75.

    Dekens, P. S., Lea, D. W., Pak, D. K., Spero, H. J. Core top calibration of Mg/Ca in tropical foraminifera: refining paleotemperature estimation. Geochem. Geophys. Geosyst. 3, 1–29 (2002).


    Google Scholar
     

  • Source link