May 29, 2024

Inhibiting the Leidenfrost effect above 1,000 °C for sustained thermal cooling – Nature

  • 1.

    Leidenfrost, J. G. De aquae communis nonnullis qualitatibus tractatus (Ovenius, 1756).

  • 2.

    Talari, V., Behar, P., Lu, Y., Haryadi, E. & Liu, D. Leidenfrost drops on micro/nanostructured surfaces. Front. Energy 12, 22–42 (2018).

    Article 

    Google Scholar
     

  • 3.

    Farokhnia, N., Sajadi, S. M., Irajizad, P. & Ghasemi, H. Decoupled hierarchical structures for suppression of Leidenfrost phenomenon. Langmuir 33, 2541–2550 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 4.

    Weickgenannt, C. M. et al. Inverse-Leidenfrost phenomenon on nanofiber mats on hot surfaces. Phys. Rev. E 84, 036310 (2011).

    ADS 
    Article 

    Google Scholar
     

  • 5.

    Kim, H. et al. On the effect of surface roughness height, wettability, and nanoporosity on Leidenfrost phenomena. Appl. Phys. Lett.98, 083121 (2011).

    ADS 
    Article 

    Google Scholar
     

  • 6.

    Kruse, C. et al. Extraordinary shifts of the Leidenfrost temperature from multiscale micro/nanostructured surfaces. Langmuir 29, 9798–9806 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 7.

    Kwon, H. M., Bird, J. C. & Varanasi, K. K. Increasing Leidenfrost point using micro-nano hierarchical surface structures. Appl. Phys. Lett.103, 201601 (2013).

    ADS 
    Article 

    Google Scholar
     

  • 8.

    Nair, H. et al. The Leidenfrost temperature increase for impacting droplets on carbon-nanofiber surfaces. Soft Matter 10, 2102–2109 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 9.

    Geraldi, N. R. et al. Leidenfrost transition temperature for stainless steel meshes. Mater. Lett. 176, 205–208 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 10.

    Sajadi, S. M., Irajizad, P., Kashyap, V., Farokhnia, N. & Ghasemi, H. Surfaces for high heat dissipation with no Leidenfrost limit. Appl. Phys. Lett.111, 021605 (2017).

    ADS 
    Article 

    Google Scholar
     

  • 11.

    Li, J. et al. Directional transport of high-temperature Janus droplets mediated by structural topography. Nat. Phys.12, 606–612 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 12.

    van Erp, R., Soleimanzadeh, R., Nela, L., Kampitsis, G. & Matioli, E. Co-designing electronics with microfluidics for more sustainable cooling. Nature 585, 211–216 (2020).

    ADS 
    Article 

    Google Scholar
     

  • 13.

    Dhillon, N. S., Buongiorno, J. & Varanasi, K. K. Critical heat flux maxima during boiling crisis on textured surfaces. Nat. Commun.6, 8247 (2015).

    ADS 
    Article 

    Google Scholar
     

  • 14.

    Gao, X. & Li, R. in Advanced Cooling Technologies and Applications (ed. Sohel Murshed, S. M.) Ch. 3 (IntechOpen, 2019).

  • 15.

    Tiwei, T. et al. High efficiency direct liquid jet impingement cooling of high power devices using a 3D-shaped polymer cooler. In Proc. 2017 IEEE International Electron Devices Meeting (IEDM) 32.5.1–32.5.4 (IEEE, 2017).

  • 16.

    Vakarelski, I. U., Patankar, N. A., Marston, J. O., Chan, D. Y. & Thoroddsen, S. T. Stabilization of Leidenfrost vapour layer by textured superhydrophobic surfaces. Nature 489, 274–277 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 17.

    Saranadhi, D. et al. Sustained drag reduction in a turbulent flow using a low-temperature Leidenfrost surface. Sci. Adv. 2, e1600686 (2016).

    ADS 
    Article 

    Google Scholar
     

  • 18.

    Burton, J. C., Sharpe, A. L., van der Veen, R. C., Franco, A. & Nagel, S. R. Geometry of the vapor layer under a Leidenfrost drop. Phys. Rev. Lett. 109, 074301 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 19.

    Adera, S., Raj, R., Enright, R. & Wang, E. N. Non-wetting droplets on hot superhydrophilic surfaces. Nat. Commun. 4, 2518 (2013).

    ADS 
    Article 

    Google Scholar
     

  • 20.

    Hsu, S. H., Ho, Y. H., Ho, M. X., Wang, J. C. & Pan, C. On the formation of vapor film during quenching in de-ionized water and elimination of film boiling during quenching in natural sea water. Int. J. Heat Mass Transfer 86, 65–71 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 21.

    Rahman, M. M., Pollack, J. & McCarthy, M. Increasing boiling heat transfer using low conductivity materials. Sci. Rep. 5, 13145 (2015).

    ADS 
    Article 

    Google Scholar
     

  • 22.

    Wei, M. et al. Heat transfer suppression by suspended droplets on microstructured surfaces. Appl. Phys. Lett. 116, 233703 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 23.

    Deng, T. et al. Nonwetting of impinging droplets on textured surfaces. Appl. Phys. Lett. 94, 133109 (2009).

    ADS 
    Article 

    Google Scholar
     

  • 24.

    Bernardin, J. D., Stebbins, C. J. & Mudawar, I. Effects of surface roughness on water droplet impact history and heat transfer regimes. Int. J. Heat Mass Transfer 40, 73–88 (1996).

    Article 

    Google Scholar
     

  • 25.

    Tran, T. et al. Droplet impact on superheated micro-structured surfaces. Soft Matter 9, 3272–3282 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 26.

    Mao, X. et al. Silica nanofibrous membranes with robust flexibility and thermal stability for high-efficiency fine particulate filtration. RSC Adv. 2, 12216–12223 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 27.

    Kim, S. H., Ahn, H. S., Kim, J., Kaviany, M. & Kim, M. H. Dynamics of water droplet on a heated nanotubes surface. Appl. Phys. Lett.102, 233901 (2013).

    ADS 
    Article 

    Google Scholar
     

  • 28.

    Lee, G. C. et al. Induced liquid-solid contact via micro/nano multiscale texture on a surface and its effect on the Leidenfrost temperature. Exp. Therm Fluid Sci.84, 156–164 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 29.

    Kim, S. H., Lee, G., Kim, H. & Kim, M. H. Leidenfrost point and droplet dynamics on heated micropillar array surface. Int. J. Heat Mass Transfer 139, 1–9 (2019).

    Article 

    Google Scholar
     

  • 30.

    Hasimoto, H. On the periodic fundamental solutions of the Stokes equations and their application to viscous flow past a cubic array of spheres. J. Fluid Mech.5, 317–328 (1959).

    ADS 
    MathSciNet 
    Article 

    Google Scholar
     

  • Source link