May 20, 2024
Label-free detection and profiling of individual solution-phase molecules – Nature

Label-free detection and profiling of individual solution-phase molecules – Nature

  • Moerner, W. E. Single-molecule spectroscopy, imaging, and photocontrol: foundations for super-resolution microscopy (Nobel Lecture). Angew. Chem. Int. Edn 54, 8067–8093 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Li, N. et al. Photonic resonator interferometric scattering microscopy. Nat. Commun. 12, 1744 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mauranyapin, N. P., Madsen, L. S., Taylor, M. A., Waleed, M. & Bowen, W. P. Evanescent single-molecule biosensing with quantum-limited precision. Nat. Photonics 11, 477–481 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Piliarik, M. & Sandoghdar, V. Direct optical sensing of single unlabelled proteins and super-resolution imaging of their binding sites. Nat. Commun. 5, 4495 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ortega Arroyo, J. et al. Label-free, all-optical detection, imaging, and tracking of a single protein. Nano Lett. 14, 2065–2070 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Taylor, R. W. & Sandoghdar, V. Interferometric scattering microscopy: seeing single nanoparticles and molecules via Rayleigh scattering. Nano Lett. 19, 4827–4835 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Young, G. et al. Quantitative mass imaging of single biological macromolecules. Science 360, 423–427 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, D. et al. Whispering-gallery-mode sensors for biological and physical sensing. Nat. Rev. Methods Primers 1, 83 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Heylman, K. D. et al. Optical microresonators for sensing and transduction: a materials perspective. Adv. Mater. 29, 1700037 (2017).

    Article 

    Google Scholar
     

  • Zijlstra, P., Paulo, P. M. R. & Orrit, M. Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod. Nat. Nanotechnol. 7, 379–382 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Baaske, M. D., Foreman, M. R. & Vollmer, F. Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform. Nat. Nanotechnol. 9, 933–939 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Dantham, V. R. et al. Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity. Nano Lett. 13, 3347–3351 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu, W., Jiang, W. C., Lin, Q. & Lu, T. Cavity optomechanical spring sensing of single molecules. Nat. Commun. 7, 12311 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Su, J., Goldberg, A. F. & Stoltz, B. M. Label-free detection of single nanoparticles and biological molecules using microtoroid optical resonators. Light Sci. Appl. 5, e16001 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Špačková, B. et al. Label-free nanofluidic scattering microscopy of size and mass of single diffusing molecules and nanoparticles. Nat. Methods 19, 751–758 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baaske, M. D., Asgari, N., Punj, D. & Orrit, M. Nanosecond time scale transient optoplasmonic detection of single proteins. Sci. Adv. 8, 5576 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Wilson, H. & Wang, Q. ABEL-FRET: tether-free single-molecule FRET with hydrodynamic profiling. Nat. Methods 18, 816–820 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Q., Goldsmith, R. H., Jiang, Y., Bockenhauer, S. D. & Moerner, W. E. Probing single biomolecules in solution using the anti-Brownian electrokinetic (ABEL) trap. Acc. Chem. Res. 45, 1955–1964 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vallance, C., Trichet, A. A. P., James, D., Dolan, P. R. & Smith, J. M. Open-access microcavities for chemical sensing. Nanotechnology 27, 274003 (2016).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Hunger, D. et al. A fiber Fabry–Perot cavity with high finesse. New J. Phys. 12, 065038 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Kohler, L., Mader, M., Kern, C., Wegener, M. & Hunger, D. Tracking Brownian motion in three dimensions and characterization of individual nanoparticles using a fiber-based high-finesse microcavity. Nat. Commun. 12, 6385 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carmon, T., Yang, L. & Vahala, K. J. Dynamical thermal behavior and thermal self-stability of microcavities. Opt. Express 12, 4742–4750 (2004).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Brachmann, J. F. S., Kaupp, H., Hänsch, T. W. & Hunger, D. Photothermal effects in ultra-precisely stabilized tunable microcavities. Opt. Express 24, 21205–21215 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Black, E. D. An introduction to Pound–Drever–Hall laser frequency stabilization. Am. J. Phys. 69, 79–87 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Moerner, W. E. & Fromm, D. P. Methods of single-molecule fluorescence spectroscopy and microscopy. Rev. Sci. Instrum. 74, 3597–3619 (2003).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Riback, J. A. et al. Commonly used FRET fluorophores promote collapse of an otherwise disordered protein. Proc. Natl Acad. Sci. USA 116, 8889–8894 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zanetti-Domingues, L. C., Tynan, C. J., Rolfe, D. J., Clarke, D. T. & Martin-Fernandez, M. Hydrophobic fluorescent probes introduce artifacts into single molecule tracking experiments due to non-specific binding. PLoS One 8, 74200 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Dietz, M. S., Wehrheim, S. S., Harwardt, M.-L. I. E., Niemann, H. H. & Heilemann, M. Competitive binding study revealing the influence of fluorophore labels on biomolecular interactions. Nano Lett. 19, 8245–8249 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Friedel, M., Baumketner, A. & Shea, J.-E. Effects of surface tethering on protein folding mechanisms. Proc. Natl Acad. Sci. USA 103, 8396–8401 (2006).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Q. & Moerner, W. E. Single-molecule motions enable direct visualization of biomolecular interactions in solution. Nat. Methods 11, 555–558 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vahala, K. J. Optical microcavities. Nature 424, 839–846 (2003).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Arnold, S., Shopova, S. I. & Holler, S. Whispering gallery mode bio-sensor for label-free detection of single molecules: thermo-optic vs. reactive mechanism. Opt. Express 18, 281–287 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu, J. et al. On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator. Nat. Photonics 4, 46–49 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Foreman, M. R., Keng, D., Treasurer, E., Lopez, J. R. & Arnold, S. Whispering gallery mode single nanoparticle detection and sizing: the validity of the dipole approximation. Opt. Lett. 42, 963–966 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Horak, E. H. et al. Exploring electronic structure and order in polymers via single-particle microresonator spectroscopy. Nano Lett. 18, 1600–1607 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Heylman, K. D. et al. Optical microresonators as single-particle absorption spectrometers. Nat. Photonics 10, 788–795 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hümmer, T. et al. Cavity-enhanced Raman microscopy of individual carbon nanotubes. Nat. Commun. 7, 12155 (2016).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hogan, L. T. et al. Toward real-time monitoring and control of single nanoparticle properties with a microbubble resonator spectrometer. ACS Nano 13, 12743–12757 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Trichet, A. A. P. et al. Nanoparticle trapping and characterization using open microcavities. Nano Lett. 16, 6172–6177 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Saavedra, C., Pandey, D., Alt, W., Pfeifer, H. & Meschede, D. Tunable fiber Fabry-Perot cavities with high passive stability. Opt. Express 29, 974–982 (2021).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Haustein, E. & Schwille, P. Fluorescence correlation spectroscopy: novel variations of an established technique. Annu. Rev. Biophys. Biomol. Struct. 36, 151–169 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barnes, J. A., Gagliardi, G. & Loock, H.-P. Absolute absorption cross-section measurement of a submonolayer film on a silica microresonator. Optica 1, 75–83 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Baaske, M. D. & Vollmer, F. Optical observation of single atomic ions interacting with plasmonic nanorods in aqueous solution. Nat. Photonics 10, 733–739 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Dahmardeh, M., Mirzaalian Dastjerdi, H., Mazal, H., Köstler, H. & Sandoghdar, V. Self-supervised machine learning pushes the sensitivity limit in label-free detection of single proteins below 10 kDa. Nat. Methods 20, 442–447 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Torres, T. & Levitus, M. Measuring conformational dynamics: a new FCS-FRET approach. J. Phys. Chem. B 111, 7392–7400 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kandula, H. N., Jee, A.-Y. & Granick, S. Robustness of FCS (fluorescence correlation spectroscopy) with quenchers present. J. Phys. Chem. A 123, 10184–10189 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kratz, K., Hellweg, T. & Eimer, W. Structural changes in PNIPAM microgel particles as seen by SANS, DLS, and EM techniques. Polymer 42, 6631–6639 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Hoo, C. M., Starostin, N., West, P. & Mecartney, M. L. A comparison of atomic force microscopy (AFM) and dynamic light scattering (DLS) methods to characterize nanoparticle size distributions. J. Nanopart. Res. 10, 89–96 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Stetefeld, J., McKenna, S. A. & Patel, T. R. Dynamic light scattering: a practical guide and applications in biomedical sciences. Biophys. Rev. 8, 409–427 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roy, P., Claude, J. B., Tiwari, S., Barulin, A. & Wenger, J. Ultraviolet nanophotonics enables autofluorescence correlation spectroscopy on label-free proteins with a single tryptophan. Nano Lett. 23, 497–504 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jameson, D. M. & Ross, J. A. Fluorescence polarization/anisotropy in diagnostics and imaging. Chem. Rev. 110, 2685–2708 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bohren, C. F. & Huffman, D. R. Absorption and Scattering of Light by Small Particles (Wiley, 1998).

  • Lukić, B. et al. Motion of a colloidal particle in an optical trap. Phys. Rev. E 76, 011112 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Gaiduk, A., Yorulmaz, M., Ruijgrok, P. V. & Orrit, M. Room-temperature detection of a single molecule’s absorption by photothermal contrast. Science 330, 353–356 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Brandstätter, B. et al. Integrated fiber-mirror ion trap for strong ion-cavity coupling. Rev. Sci. Instrum. 84, 123104 (2013).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Gallego, J. et al. High-finesse fiber Fabry–Perot cavities: stabilization and mode matching analysis. Appl. Phys. B 122, 47 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Demtröder, W. Laser Spectroscopy 1: Basic Principles (Springer, 2014).

  • van Oss, C. J. et al. Macroscopic-scale surface properties of streptavidin and their influence on aspecific interactions between streptavidin and dissolved biopolymers. Colloids Surf. B Biointerfaces 30, 25–36 (2003).

    Article 

    Google Scholar
     

  • Krishnamurthy, V. M. et al. Carbonic anhydrase as a model for biophysical and physical-organic studies of proteins and protein–ligand binding. Chem. Rev. 108, 946–1051 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Agić, D., Brkić, H., Kazazić, S., Tomić, A. & Abramić, M. Aprotinin interacts with substrate-binding site of human dipeptidyl peptidase III. J. Biomol. Struct. Dyn. 37, 3596–3606 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Evan, G. I., Lewis, G. K., Ramsay, G. & Michael Bishop, J. Isolation of monoclonal antibodies specific for human c-myc proto-oncogene product. Mol. Cell. Biol. 5, 3610–3616 (1985).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hilvo, M. et al. Biochemical characterization of CA IX, one of the most active carbonic anhydrase isozymes. J. Biol. Chem. 283, 27799–27809 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Novais, S., Ferreira, M. S. & Pinto, J. L. Determination of thermo-optic coefficient of ethanol-water mixtures with optical fiber tip sensor. Opt. Fiber Technol. 45, 276–279 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Needham, L.-M. et al. Label-free detection and profiling of individual solution-phase molecules—sample raw data. figshare https://doi.org/10.6084/m9.figshare.25463965.v1 (2024).

  • Source link