May 25, 2024
Light-enabled deracemization of cyclopropanes by Al-salen photocatalysis – Nature

Light-enabled deracemization of cyclopropanes by Al-salen photocatalysis – Nature

  • Seebach, D. Organic synthesis—where now? Angew. Chem. Int. Ed. 29, 1320–1367 (1990).

  • Twilton, J. et al. The merger of transition metal and photocatalysis. Nat. Rev. Chem. 1, 0052 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Genzink, M. J., Kidd, J. B., Swords, W. B. & Yoon, T. P. Chiral photocatalyst structures in asymmetric photochemical synthesis. Chem. Rev. 122, 1654–1716 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Burg, F. & Bach, T. Lactam hydrogen bonds as control elements in enantioselective transition-metal-catalyzed and photochemical reactions. J. Org. Chem. 84, 8815–8836 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • DeHovitz, J. S. & Hyster, T. K. Photoinduced dynamic radical processes for isomerizations, deracemizations, and dynamic kinetic resolutions. ACS Catal. 12, 8911–8924 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Prier, C. K., Rankic, D. A. & MacMillan, D. W. C. Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem. Rev. 113, 5322–5363 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Silvi, M. & Melchiorre, P. Enhancing the potential of enantioselective organocatalysis with light. Nature 554, 41–49 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Arias-Rotondo, D. M. & McCusker, J. K. The photophysics of photoredox catalysis: a roadmap for catalyst design. Chem. Soc. Rev. 45, 5803–5820 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marzo, L., Pagire, S. K., Reiser, O. & König, B. Visible-light photocatalysis: does it make a difference in organic synthesis? Angew. Chem. Int. Ed. 57, 10034–10072 (2018).

  • Großkopf, J., Kratz, T., Rigotti, T. & Bach, T. Enantioselective photochemical reactions enabled by triplet energy transfer. Chem. Rev. 122, 1626–1653 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Buglioni, L., Raymenants, F., Slattery, A., Zondag, S. D. A. & Noël, T. Technological innovations in photochemistry for organic synthesis: flow chemistry, high-throughput experimentation, scale-up, and photoelectrochemistry. Chem. Rev. 122, 2752–2906 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lewis, G. N. A new principle of equilibrium. Proc. Natl Acad. Sci. USA 11, 179–183 (1925).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stoll, R. S. & Hecht, S. Artificial light-gated catalyst systems. Angew. Chem. Int. Ed. 49, 5054–5075 (2010).

  • Kathan, M. & Hecht, S. Photoswitchable molecules as key ingredients to drive systems away from the global thermodynamic minimum. Chem. Soc. Rev. 46, 5536–5550 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Molloy, J. J., Morack, T. & Gilmour, R. Positional and geometrical isomerisation of alkenes: the pinnacle of atom economy. Angew. Chem. Int. Ed. 58, 13654–13664 (2019).

  • Lechner, V. M. et al. Visible-light-mediated modification and manipulation of biomacromolecules. Chem. Rev. 122, 1752–1829 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Geri, J. B. et al. Microenvironment mapping via Dexter energy transfer on immune cells. Science 367, 1091–1097 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Trowbridge, A. D. et al. Small molecule photocatalysis enables drug target identification via energy transfer. Proc. Natl Acad. Sci. USA 119, e2208077119 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Du, J., Skubi, K. L., Schultz, D. M. & Yoon, T. P. A dual-catalysis approach to enantioselective [2 + 2] photocycloadditions using visible light. Science 344, 392–396 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Skubi, K. L., Blum, T. R. & Yoon, T. P. Dual catalysis strategies in photochemical synthesis. Chem. Rev. 116, 10035–10074 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chan, A. Y. et al. Metallaphotoredox: the merger of photoredox and transition metal catalysis. Chem. Rev. 122, 1485–1542 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yoon, T. P. Photochemical stereocontrol using tandem photoredox–chiral Lewis acid catalysis. Acc. Chem. Res. 49, 2307–2315 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jacobsen, E. N., Pfaltz, A. & Yamamoto, H. Comprehensive Asymmetric Catalysis 1st edn (Springer, 1999).

  • Yoon, T. P. & Jacobsen, E. N. Privileged chiral catalysts. Science 299, 1691–1693 (2003).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bach, T., Bergmann, H., Grosch, B. & Harms, K. Highly enantioselective intra- and intermolecular [2 + 2] photocycloaddition reactions of 2-quinolones mediated by a chiral lactam host: host–guest interactions, product configuration, and the origin of the stereoselectivity in solution. J. Am. Chem. Soc. 124, 7982–7990 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tröster, A., Alonso, R., Bauer, A. & Bach, T. Enantioselective intermolecular [2 + 2] photocycloaddition reactions of 2(1H)-quinolones induced by visible light irradiation. J. Am. Chem. Soc. 138, 7808–7811 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bauer, A., Westkämper, F., Grimme, S. & Bach, T. Catalytic enantioselective reactions driven by photoinduced electron transfer. Nature 436, 1139–1140 (2005).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Huo, H. et al. Asymmetric photoredox transition-metal catalysis activated by visible light. Nature 515, 100–103 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Skubi, K. L. et al. Enantioselective excited-state photoreactions controlled by a chiral hydrogen-bonding iridium sensitizer. J. Am. Chem. Soc. 139, 17186–17192 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo, H., Herdtweck, E. & Bach, T. Enantioselective Lewis acid catalysis in intramolecular [2+2] photocycloaddition reactions of coumarins. Angew. Chem. Int. Ed. 49, 7782–7785 (2010).

  • Brimioulle, R. & Bach, T. Enantioselective Lewis acid catalysis of intramolecular enone [2+2] photocycloaddition reactions. Science 342, 840–843 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lewis, F. D., Howard, D. K. & Oxman, J. D. Lewis acid catalysis of coumarin photodimerization. J. Am. Chem. Soc. 105, 3344–3345 (1983).

    Article 
    CAS 

    Google Scholar
     

  • Shaw, S. & White, J. D. Asymmetric catalysis using chiral salen–metal complexes: recent advances. Chem. Rev. 119, 9381–9426 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Baleizão, C. et al. Photochemistry of chiral pentacoordinated Al salen complexes. Chiral recognition in the quenching of photogenerated tetracoordinated Al salen transient by alkenes. Photochem. Photobiol. Sci. 2, 386–392 (2003).

    Article 

    Google Scholar
     

  • Cozzi, P. G. et al. Photophysical poperties of Schiff-base metal complexes. New J. Chem. 27, 692–697 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Molloy, J. J. et al. Boron-enabled geometric isomerization of alkenes via selective energy-transfer catalysis. Science 369, 302–306 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Neveselý, T., Wienhold, M., Molloy, J. J. & Gilmour, R. Advances in the EZ isomerization of alkenes using small molecule photocatalysts. Chem. Rev. 122, 2650–2694 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Sparr, C. & Gilmour, R. Cyclopropyl iminium activation: reactivity umpolung in enantioselective organocatalytic reaction design. Angew. Chem. Int. Ed. 50, 8391–8395 (2011).

  • Hammond, G. S. & Cole, R. S. Asymmetric induction during energy transfer. J. Am. Chem. Soc. 87, 3256–3257 (1965).

    Article 
    CAS 

    Google Scholar
     

  • Ouannes, C., Beugelmans, R. & Roussi, G. Asymmetric induction during transfer of triplet energy. J. Am. Chem. Soc. 95, 8472–8474 (1973).

    Article 
    CAS 

    Google Scholar
     

  • Tanko, J. M. & Drumright, R. E. Radical ion probes. I. Cyclopropyl-carbinyl rearrangements of aryl cyclopropyl ketyl anions. J. Am. Chem. Soc. 112, 5362–5363 (1990).

    Article 
    CAS 

    Google Scholar
     

  • Kim, S., Chen, P.-P., Houk, K. N. & Knowles, R. R. Reversible homolysis of a carbon–carbon σ-bond enabled by complexation-induced bond-weakening. J. Am. Chem. Soc. 144, 15488–15496 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hölzl-Hobmeier, A. et al. Catalytic deracemization of chiral allenes by sensitized excitation with visible light. Nature 564, 240–243 (2018).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Shin, N. Y., Ryss, J. M., Zhang, X., Miller, S. J. & Knowles, R. R. Light-driven deracemization enabled by excited-state electron transfer. Science 366, 364–369 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tröster, A., Bauer, A., Jandl, C. & Bach, T. Enantioselective visible-light-mediated formation of 3-cyclopropylquinolones by triplet-sensitized deracemization. Angew. Chem. Int. Ed. 58, 3538–3541 (2019).

  • Li, X. et al. Photochemically induced ring opening of spirocyclopropyl oxindoles: evidence for a triplet 1,3-diradical intermediate and deracemization by a chiral sensitizer. Angew. Chem. Int. Ed. 59, 21640–21647 (2020).

  • Plaza, M., Jandl, C. & Bach, T. Photochemical deracemization of allenes and subsequent chirality transfer. Angew. Chem. Int. Ed. 59, 12785–12788 (2020).

  • Großkopf, J. et al. Photochemical deracemization at sp3-hybridized carbon centers via a reversible hydrogen atom transfer. J. Am. Chem. Soc. 143, 21241–21245 (2021).

  • Plaza, M., Großkopf, J., Breitenlechner, S., Bannwarth, C. & Bach, T. Photochemical deracemization of primary allene amides by triplet energy transfer: a combined synthetic and theoretical study. J. Am. Chem. Soc. 143, 11209–11217 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, C. et al. Catalytic α-deracemization of ketones enabled by photoredox deprotonation and enantioselective protonation. J. Am. Chem. Soc. 143, 13393–13400 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, M., Zhang, L., Pan, T. & Luo, S. Deracemization through photochemical E/Z isomerization of enamines. Science 375, 869–874 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kratz, T. et al. Photochemical deracemization of chiral alkenes via triplet energy transfer. J. Am. Chem. Soc. 144, 10133–10138 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schmidt, T. A. & Sparr, C. Photocatalytic deracemisation of cobalt(III) complexes with fourfold stereogenicity. Chem. Comm. 58, 12172–12175 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gualandi, A. et al. Aluminum(III) salen complexes as active photoredox catalysts. Eur. J. Org. Chem. 2020, 1486–1490 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Tazuke, S., Kitamura, N. & Kawanishi, Y. Problems of back electron transfer in electron transfer sensitization. J. Photochem. 29, 123–138 (1985).

    Article 
    CAS 

    Google Scholar
     

  • Speckmeier, E., Fuchs, P. J. W. & Zeitler, K. A synergistic LUMO lowering strategy using Lewis acid catalysis in water to enable photoredox catalytic, functionalizing C–C cross-coupling of styrenes. Chem. Sci. 9, 7096–7103 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buzzetti, L., Crisenza, G. E. M. & Melchiorre, P. Mechanistic studies in photocatalysis. Angew. Chem. Int. Ed. 58, 3730–3747 (2019).

  • Zhang, X. & Rovis, T. Photocatalyzed triplet sensitization of oximes using visible light provides a route to nonclassical Beckmann rearrangement products. J. Am. Chem. Soc. 143, 21211–21217 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Avery, T. D. et al. A concise route to β-cyclopropyl amino acids utilizing 1,2-dioxines and stabilized phosphonate nucleophiles. J. Org. Chem. 73, 2633–2640 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Feng, M., Yang, P., Yang, G., Chen, W. & Chai, Z. FeCl3-promoted [3 + 2] annulations of γ-butyrolactone fused cyclopropanes with heterocumulenes. J. Org. Chem. 83, 174–184 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tamilarasan, V. J. & Srinivasan, K. SnCl4-promoted [3+2] annulation of γ-butyrolactone-fused donor-acceptor cyclopropanes with nitriles: access to γ-butyrolactone-fused 1-pyrrolines. J. Org. Chem. 84, 8782–8787 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Source link