May 29, 2024
Limited increases in savanna carbon stocks over decades of fire suppression – Nature

Limited increases in savanna carbon stocks over decades of fire suppression – Nature

  • Giglio, L., Schroeder, W. & Justice, C. O. The collection 6 MODIS active fire detection algorithm and fire products. Remote Sens. Environ. 178, 31–41 (2016).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grace, J., José, J. S., Meir, P., Miranda, H. S. & Montes, R. A. Productivity and carbon fluxes of tropical savannas. J. Biogeogr. 33, 387–400 (2006).


    Google Scholar
     

  • Van Der Werf, G. R. et al. Global fire emissions estimates during 1997–2016. Earth Syst. Sci. Data 9, 697–720 (2017).

    ADS 

    Google Scholar
     

  • Bastin, J.-F. et al. The global tree restoration potential. Science 365, 76–79 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Russell-Smith, J. et al. Opportunities and challenges for savanna burning emissions abatement in southern Africa. J. Environ. Manage. 288, 112414 (2021).

    CAS 

    Google Scholar
     

  • Andela, N. et al. A human-driven decline in global burned area. Science 356, 1356–1362 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, C. et al. Historical and future global burned area with changing climate and human demography. One Earth 4, 517–530 (2021).

    ADS 

    Google Scholar
     

  • Pellegrini, A. F. A. et al. Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity. Nature 553, 194–198 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • Higgins, S. I. et al. Effects of four decades of fire manipulation on woody vegetation structure in savanna. Ecology 88, 1119–1125 (2007).


    Google Scholar
     

  • Staver, A. C., Archibald, S. & Levin, S. A. The global extent and determinants of savanna and forest as alternative biome states. Science 334, 230–232 (2011).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Shi, Z. et al. The age distribution of global soil carbon inferred from radiocarbon measurements. Nat. Geosci. 13, 555–559 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Pellegrini, A. F. A., Hedin, L. O., Staver, A. C. & Govender, N. Fire alters ecosystem carbon and nutrients but not plant nutrient stoichiometry or composition in tropical savanna. Ecology 96, 1275–1285 (2015).

    PubMed 

    Google Scholar
     

  • Tilman, D. et al. Fire suppression and ecosystem carbon storage. Ecology 81, 2680–2685 (2000).


    Google Scholar
     

  • Mokany, K., Raison, R. J. & Prokushkin, A. S. Critical analysis of root:shoot ratios in terrestrial biomes. Glob. Change Biol. 12, 84–96 (2006).

    ADS 

    Google Scholar
     

  • de Miranda, S. D. C. et al. Regional variations in biomass distribution in Brazilian savanna woodland. Biotropica 46, 125–138 (2014).


    Google Scholar
     

  • Wigley, B. J., Cramer, M. D. & Bond, W. J. Sapling survival in a frequently burnt savanna: mobilisation of carbon reserves in Acacia karroo. Plant Ecol. 203, 1 (2009).


    Google Scholar
     

  • Sankaran, M. et al. Determinants of woody cover in African savannas. Nature 438, 846–849 (2005).

    ADS 
    CAS 

    Google Scholar
     

  • Staver, A. C., Botha, J. & Hedin, L. Soils and fire jointly determine vegetation structure in an African savanna. New Phytol. 216, 1151–1160 (2017).

    CAS 

    Google Scholar
     

  • Zhou, Y., Wigley, B. J., Case, M. F., Coetsee, C. & Staver, A. C. Rooting depth as a key woody functional trait in savannas. New Phytol. 227, 1350–1361 (2020).


    Google Scholar
     

  • Govender, N., Trollope, W. S. W., Van, & Wilgen, B. W. The effect of fire season, fire frequency, rainfall and management on fire intensity in savanna vegetation in South Africa. J. Appl. Ecol. 43, 748–758 (2006).


    Google Scholar
     

  • Colgan, M. S., Asner, G. P. & Swemmer, T. Harvesting tree biomass at the stand level to assess the accuracy of field and airborne biomass estimation in savannas. Ecol. Appl. 23, 1170–1184 (2013).


    Google Scholar
     

  • Davies, A. B. & Asner, G. P. Elephants limit aboveground carbon gains in African savannas. Glob. Change Biol. 25, 1368–1382 (2019).

    ADS 

    Google Scholar
     

  • Butnor, J. R. et al. Utility of ground-penetrating radar as a root biomass survey tool in forest systems. Soil Sci. Soc. Am. J. 67, 1607–1615 (2003).

    ADS 
    CAS 

    Google Scholar
     

  • Staver, A. C., Wigley-Coetsee, C. & Botha, J. Grazer movements exacerbate grass declines during drought in an African savanna. J. Ecol. 107, 1482–1491 (2019).


    Google Scholar
     

  • Ryan, C. M., Williams, M. & Grace, J. Above- and belowground carbon stocks in a miombo woodland landscape of Mozambique. Biotropica 43, 423–432 (2011).


    Google Scholar
     

  • Swezy, D. M. & Agee, J. K. Prescribed-fire effects on fine-root and tree mortality in old-growth ponderosa pine. Can. J. For. Res. 21, 626–634 (1991).


    Google Scholar
     

  • Canadell, J. et al. Maximum rooting depth of vegetation types at the global scale. Oecologia 108, 583–595 (1996).

    ADS 
    CAS 

    Google Scholar
     

  • Coetsee, C., Bond, W. J. & February, E. C. Frequent fire affects soil nitrogen and carbon in an African savanna by changing woody cover. Oecologia 162, 1027–1034 (2010).

    ADS 

    Google Scholar
     

  • Holdo, R. M., Mack, M. C. & Arnold, S. G. Tree canopies explain fire effects on soil nitrogen, phosphorus and carbon in a savanna ecosystem. J. Veg. Sci. 23, 352–360 (2012).


    Google Scholar
     

  • Lloyd, J. et al. Contributions of woody and herbaceous vegetation to tropical savanna ecosystem productivity: a quasi-global estimate. Tree Physiol. 28, 451–468 (2008).


    Google Scholar
     

  • Wigley, B. J., Augustine, D. J., Coetsee, C., Ratnam, J. & Sankaran, M. Grasses continue to trump trees at soil carbon sequestration following herbivore exclusion in a semiarid African savanna. Ecology 101, e03008 (2020).


    Google Scholar
     

  • Khomo, L., Trumbore, S., Bern, C. R. & Chadwick, O. A. Timescales of carbon turnover in soils with mixed crystalline mineralogies. Soil 3, 17–30 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • Six, J., Conant, R. T., Paul, E. A. & Paustian, K. Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant Soil 241, 155–176 (2002).

    CAS 

    Google Scholar
     

  • Abreu, R. C. R. et al. The biodiversity cost of carbon sequestration in tropical savanna. Sci. Adv. 3, e1701284 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bond, W. J., Stevens, N., Midgley, G. F. & Lehmann, C. E. The trouble with trees: afforestation plans for Africa. Trends Ecol. Evol. 34, 963–965 (2019).


    Google Scholar
     

  • West, T. A., Börner, J. & Fearnside, P. M. Climatic benefits from the 2006–2017 avoided deforestation in Amazonian Brazil. Front. For. Glob. Change 2, 52 (2019).


    Google Scholar
     

  • Aleman, J. C., Blarquez, O. & Staver, C. A. Land-use change outweighs projected effects of changing rainfall on tree cover in sub-Saharan Africa. Glob. Change Biol. 22, 3013–3025 (2016).

    ADS 

    Google Scholar
     

  • Huang, J., Yu, H., Guan, X., Wang, G. & Guo, R. Accelerated dryland expansion under climate change. Nat. Clim. Change 6, 166–171 (2016).

    ADS 

    Google Scholar
     

  • Ratajczak, Z., Nippert, J. B. & Collins, S. L. Woody encroachment decreases diversity across North American grasslands and savannas. Ecology 93, 697–703 (2012).

    PubMed 

    Google Scholar
     

  • Smit, I. P. & Prins, H. H. Predicting the effects of woody encroachment on mammal communities, grazing biomass and fire frequency in African savannas. PLoS One 10, e0137857 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huxman, T. E. et al. Ecohydrological implications of woody plant encroachment. Ecology 86, 308–319 (2005).


    Google Scholar
     

  • Hermoso, V., Regos, A., Morán-Ordóñez, A., Duane, A. & Brotons, L. Tree planting: a double-edged sword to fight climate change in an era of megafires. Glob. Change Biol. 27, 3001–3003 (2021).


    Google Scholar
     

  • Venter F. A. Classification of Land for Management Planning in the Kruger National Park. PhD thesis, Univ. South Africa (1990).

  • Biggs, R., Biggs, H. C., Dunne, T. T., Govender, N. & Potgieter, A. L. F. Experimental burn plot trial in the Kruger National Park: history, experimental design and suggestions for data analysis. Koedoe 46, 15 (2003).


    Google Scholar
     

  • Codron, J. et al. Taxonomic, anatomical, and spatio-temporal variations in the stable carbon and nitrogen isotopic compositions of plants from an African savanna. J. Archaeol. Sci. 32, 1757–1772 (2005).


    Google Scholar
     

  • Zhou, Y., Boutton, T. W. & Ben Wu, X. Soil carbon response to woody plant encroachment: importance of spatial heterogeneity and deep soil storage. J. Ecol. 105, 1738–1749 (2017).

    CAS 

    Google Scholar
     

  • Sheldrick B. & Wang C. In Soil Sampling and Methods of Analysis (ed. Carter, M. R.) 499–511 (CRC Press, 1993).

  • Butnor, J. R. et al. Surface-based GPR underestimates below-stump root biomass. Plant Soil 402, 47–62 (2016).

    CAS 

    Google Scholar
     

  • Pau, G., Fuchs, F., Sklyar, O., Boutros, M. & Huber, W. EBImage—an R package for image processing with applications to cellular phenotypes. Bioinformatics 26, 979–981 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hirano, Y. et al. Limiting factors in the detection of tree roots using ground-penetrating radar. Plant Soil 319, 15–24 (2009).

    CAS 

    Google Scholar
     

  • Popescu, S. C. & Wynne, R. H. Seeing the trees in the forest. Photogramm. Eng. Remote Sensing 70, 589–604 (2004).


    Google Scholar
     

  • Case, M. F., Wigley-Coetsee, C., Nzima, N., Scogings, P. F. & Staver, A. C. Severe drought limits trees in a semi-arid savanna. Ecology 100, e02842 (2019).


    Google Scholar
     

  • Beucher S. & Meyer F. In Mathematical Morphology in Image Processing (ed. Dougherty, E. R.) 433–481 (CRC Press, 1993).

  • Nickless, A., Scholes, R. J. & Archibald, S. A method for calculating the variance and confidence intervals for tree biomass estimates obtained from allometric equations. S. Afr. J. Sci. 107, 1–10 (2011).


    Google Scholar
     

  • Plowright A. & Roussel J.-R. ForestTools: analyzing remotely sensed forest data. R package version 0.2.1. https://CRAN.R-project.org/package=ForestTools (2020).

  • Hijmans R. J. raster: geographic data analysis and modeling. R package version 3.3-7. https://CRAN.R-project.org/package=raster (2020).

  • Penman J. et al. (eds) Good Practice Guidance for Land Use, Land-Use Change and Forestry (Intergovernmental Panel on Climate Change, 2003).

  • Kuznetsova, A., Brockhoff, P. & Christensen, R. lmerTest package: tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).


    Google Scholar
     

  • Source link