May 19, 2024
Lithium tantalate photonic integrated circuits for volume manufacturing – Nature

Lithium tantalate photonic integrated circuits for volume manufacturing – Nature

  • Zhu, D. et al. Integrated photonics on thin-film lithium niobate. Adv. Opt. Photonics 13, 242–352 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Boes, A. et al. Lithium niobate photonics: unlocking the electromagnetic spectrum. Science 379, eabj4396 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, C. et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 562, 101–104 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, M. et al. Dual-polarization thin-film lithium niobate in-phase quadrature modulators for terabit-per-second transmission. Optica 9, 61–62 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Shen, Y. et al. Deep learning with coherent nanophotonic circuits. Nat. Photon. 11, 441–446 (2017).

  • Butaud, E. et al. Innovative Smart Cut piezo on insulator (POI) substrates for 5G acoustic filters. In 2020 IEEE International Electron Devices Meeting (IEDM) (ed. Datta, S.) 34.6.1–34.6.4 (IEEE, 2020).

  • Li, Z. et al. High density lithium niobate photonic integrated circuits. Nat. Commun. 14, 4856 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thomson, D. et al. Roadmap on silicon photonics. J. Opt. 18, 073003 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Margalit, N. et al. Perspective on the future of silicon photonics and electronics. Appl. Phys. Lett. 118, 220501 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bruel, M. & Auberton-Hervé, B. A. Smart-Cut: a new silicon on insulator material technology based on hydrogen implantation and wafer bonding. Jpn. J. Appl. Phys. 36, 1636 (1997).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • He, M. et al. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s–1 and beyond. Nat. Photon. 13, 359–364 (2019).

  • Zhang, M. et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature 568, 373–377 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ballandras, S. et al. New generation of SAW devices on advanced engineered substrates combining piezoelectric single crystals and silicon. In 2019 Joint Conference of the IEEE International Frequency Control Symposium and European Frequency and Time Forum (EFTF/IFC) 1–6 (IEEE, 2019).

  • Yan, Y. et al. Wafer-scale fabrication of 42° rotated y-cut LiTaO3-on-insulator (LTOI) substrate for a SAW resonator. ACS Appl. Electron. Mater. 1, 1660–1666 (2019).

    Article 
    CAS 

    Google Scholar
     

  • SOITEC. Capital markets day 2021. https://www.soitec.com/en/capital-markets-day-2021 (2021).

  • Gruber, M. et al. Atomistic origins of the differences in anisotropic fracture behaviour of LiTaO3 and LiNbO3 single crystals. Acta Mater. 150, 373–380 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zanatta, A. R. The optical bandgap of lithium niobate (LiNbO3) and its dependence with temperature. Results Phys. 39, 105736 (2022).

    Article 

    Google Scholar
     

  • Dhar, A. & Mansingh, A. Optical properties of reduced lithium niobate single crystals. J. Appl. Phys. 68, 5804–5809 (1990).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Çabuk, S. & Mamedov, A. Urbach rule and optical properties of the LiNbO3 and LitTaO3. J. Opt. A: Pure Appl. Opt. 1, 424 (1999).

    Article 
    ADS 

    Google Scholar
     

  • Meyn, J.-P. & Fejer, M. M. Tunable ultraviolet radiation by second-harmonic generation in periodically poled lithium tantalate. Opt. Lett. 22, 1214–1216 (1997).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Javerzac-Galy, C. et al. On-chip microwave-to-optical quantum coherent converter based on a superconducting resonator coupled to an electro-optic microresonator. Phys. Rev. A 94, 053815 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Han, X., Fu, W., Zou, C.-L., Jiang, L. & Tang, H. X. Microwave-optical quantum frequency conversion. Optica 8, 1050–1064 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Jacob, M. V. et al. Temperature dependence of permittivity and loss tangent of lithium tantalate at microwave frequencies. IEEE Trans. Microw. Theory Tech. 52, 536–541 (2004).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yang, R.-Y., Su, Y.-K., Weng, M.-H., Hung, C.-Y. & Wu, H.-W. Characteristics of coplanar waveguide on lithium niobate crystals as a microwave substrate. J. Appl. Phys. 101, 014101 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Tormo-Marquez, V., Díaz-Hijar, M., Carrascosa, M., Shur, V. Y. & Olivares, J. Low loss optical waveguides fabricated in LiTaO3 by swift heavy ion irradiation. Opt. Express 27, 8696–8708 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Soltani, M. et al. Ultrahigh Q whispering gallery mode electro-optic resonators on a silicon photonic chip. Opt. Lett. 41, 4375–4378 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu, Y., Johnston, B., Dekker, P., Withford, M. J. & Dawes, J. M. Channel waveguides in lithium niobate and lithium tantalate. Molecules 25, 3925 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan, X. et al. High optical damage threshold on-chip lithium tantalate microdisk resonator. Opt. Lett. 45, 4100–4103 (2020).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Jia, Y., Wang, L. & Chen, F. Ion-cut lithium niobate on insulator technology: recent advances and perspectives. Appl. Phys. Rev. 8, 011307 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Del’Haye, P., Arcizet, O., Gorodetsky, M. L., Holzwarth, R. & Kippenberg, T. J. Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion. Nat. Photon. 3, 529–533 (2009).

  • Xiao, X. et al. Performance of LiTaO3 crystals and thin films and their application. Crystals 13, 1233 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Luke, K. et al. Wafer-scale low-loss lithium niobate photonic integrated circuits. Opt. Express 28, 24452–24458 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, J. et al. High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits. Nat. Commun. 12, 2236 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shams-Ansari, A. et al. Reduced material loss in thin-film lithium niobate waveguides. APL Photonics 7, 081301 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Pan, A., Hu, C., Zeng, C. & Xia, J. Fundamental mode hybridization in a thin film lithium niobate ridge waveguide. Opt. Express 27, 35659–35669 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu, C. et al. Highly tunable birefringent phase-matched second-harmonic generation in an angle-cut lithium niobate-on-insulator ridge waveguide. Opt. Lett. 47, 1081–1084 (2022).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Wang, J., Chen, P., Dai, D. & Liu, L. Polarization coupling of X-cut thin film lithium niobate based waveguides. IEEE Photonics J.12, 2200310 (2020).

    CAS 

    Google Scholar
     

  • Chen, F. S. Optically induced change of refractive indices in LiNbO3 and LiTaO3. J. Appl. Phys. 40, 3389–3396 (1969).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Herr, T. et al. Temporal solitons in optical microresonators. Nat. Photon. 8, 145–152 (2014).

  • Kippenberg, T. J., Gaeta, A. L., Lipson, M. & Gorodetsky, M. L. Dissipative Kerr solitons in optical microresonators. Science 361, eaan8083 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Repelin, Y., Husson, E., Bennani, F. & Proust, C. Raman spectroscopy of lithium niobate and lithium tantalate. Force field calculations. J. Phys. Chem. Solids 60, 819–825 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • He, Y. et al. High-speed tunable microwave-rate soliton microcomb. Nat. Commun. 14, 3467 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stone, J. R. et al. Thermal and nonlinear dissipative-soliton dynamics in Kerr-microresonator frequency combs. Phys. Rev. Lett. 121, 063902 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, J. et al. Photonic microwave generation in the X- and K-band using integrated soliton microcombs. Nat. Photon. 14, 486–491 (2020).

  • Zhao, J., Ma, C., Rüsing, M. & Mookherjea, S. High quality entangled photon pair generation in periodically poled thin-film lithium niobate waveguides. Phys. Rev. Lett. 124, 163603 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Nehra, R. et al. Few-cycle vacuum squeezing in nanophotonics. Science 377, 1333–1337 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gong, Z., Shen, M., Lu, J., Surya, J. B. & Tang, H. X. Monolithic Kerr and electro-optic hybrid microcombs. Optica 9, 1060–1065 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hu, Y. et al. High-efficiency and broadband on-chip electro-optic frequency comb generators. Nat. Photon. 16, 679–685 (2022).

  • Youssefi, A. et al. A cryogenic electro-optic interconnect for superconducting devices. Nat. Electron. 4, 326–332 (2021).

  • Wang, C., & Kippenberg, T. J. Lithium tantalate photonic integrated circuits for volume manufacturing. Zenodo https://doi.org/10.5281/zenodo.10215426 (2023).

  • Source link