May 23, 2024
Low-hysteresis shape-memory ceramics designed by multimode modelling – Nature

Low-hysteresis shape-memory ceramics designed by multimode modelling – Nature

  • Swain, M. V. Shape memory behaviour in partially stabilized zirconia ceramics. Nature 322, 234–236 (1986).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Lai, A., Du, Z., Gan, C. L. & Schuh, C. A. Shape memory and superelastic ceramics at small scales. Science 341, 1505–1508 (2013).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zeng, X., Du, Z., Schuh, C. A. & Gan, C. L. Enhanced shape memory and superelasticity in small-volume ceramics: a perspective on the controlling factors. MRS Commun. 7, 747–754 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Du, Z., Zhou, X., Ye, P., Zeng, X. & Gan, C. L. Shape-memory actuation in aligned zirconia nanofibers for artificial muscle applications at elevated temperatures. ACS Appl. Nano Mater. 3, 2156–2166 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Lai, A. & Schuh, C. A. Direct electric-field induced phase transformation in paraelectric zirconia via electrical susceptibility mismatch. Phys. Rev. Lett. 126, 15701 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Pang, E. L., Olson, G. B. & Schuh, C. A. The mechanism of thermal transformation hysteresis in ZrO2-CeO2 shape-memory ceramics. Acta Mater. 213, 116972 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Gu, H. et al. Exploding and weeping ceramics. Nature 599, 416–420 (2021).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jetter, J. et al. Tuning crystallographic compatibility to enhance shape memory in ceramics. Phys. Rev. Mater. 3, 093603 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Song, Y., Chen, X., Dabade, V., Shield, T. W. & James, R. D. Enhanced reversibility and unusual microstructure of a phase-transforming material. Nature 502, 85–88 (2013).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cui, J. et al. Combinatorial search of thermoelastic shape-memory alloys with extremely small hysteresis width. Nat. Mater. 5, 286–290 (2006).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zarnetta, R. et al. Identification of quaternary shape memory alloys with near-zero thermal hysteresis and unprecedented functional stability. Adv. Funct. Mater. 20, 1917–1923 (2010).

    CAS 
    Article 

    Google Scholar
     

  • Pang, E. L., Olson, G. B. & Schuh, C. A. Role of grain constraint on the martensitic transformation in ceria-doped zirconia. J. Am. Ceram. Soc. 104, 1156–1168 (2020).

    Article 

    Google Scholar
     

  • Christian, J. W., Olson, G. B. & Cohen, M. Classification of displacive transformations: what is a martensitic transformation? J. Phys. IV 5, C8-3–C8-10 (1995).


    Google Scholar
     

  • Krauss, G. Martensite in steel: strength and structure. Mater. Sci. Eng. A 273–275, 40–57 (1999).

    Article 

    Google Scholar
     

  • Bhattacharya, K. Microstructure of Martensite: Why It Forms and How It Gives Rise to the Shape-Memory Effect (Oxford Univ. Press, 2003).

  • Kelly, P. M. & Francis Rose, L. R. The martensitic transformation in ceramics—its role in transformation toughening. Prog. Mater Sci. 47, 463–557 (2002).

    CAS 
    Article 

    Google Scholar
     

  • Wechsler, W. S., Lieberman, D. S. & Read, T. A. On the theory of the formation of martensite. Trans. AIME 197, 1503–1515 (1953).


    Google Scholar
     

  • Bowles, J. S. & Mackenzie, J. K. The crystallography of martensite transformations I. Acta Metall. 2, 129–137 (1954).

    CAS 
    Article 

    Google Scholar
     

  • Mackenzie, J. K. & Bowles, J. S. The crystallography of martensite transformations II. Acta Metall. 2, 138–147 (1954).

    CAS 
    Article 

    Google Scholar
     

  • Bowles, J. S. & Mackenzie, J. K. The crystallography of martensite transformations III. Face-centred cubic to body-centred tetragonal transformations. Acta Metall. 2, 224–234 (1954).

    CAS 
    Article 

    Google Scholar
     

  • Ball, J. M. & James, R. D. Fine phase mixtures as minimizers of energy. Arch. Ration. Mech. Anal. 100, 13–52 (1987).

    MathSciNet 
    MATH 
    Article 

    Google Scholar
     

  • Chen, X., Srivastava, V., Dabade, V. & James, R. D. Study of the cofactor conditions: conditions of supercompatibility between phases. J. Mech. Phys. Solids 61, 2566–2587 (2013).

    ADS 
    MathSciNet 
    CAS 
    MATH 
    Article 

    Google Scholar
     

  • Zhang, Z., James, R. D. & Müller, S. Energy barriers and hysteresis in martensitic phase transformations. Acta Mater. 57, 4332–4352 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Delville, R. et al. Transmission electron microscopy study of phase compatibility in low hysteresis shape memory alloys. Philos. Mag. 90, 177–195 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Meng, X. L., Li, H., Cai, W., Hao, S. J. & Cui, L. S. Thermal cycling stability mechanism of Ti50.5Ni33.5Cu11.5Pd4.5 shape memory alloy with near-zero hysteresis. Scr. Mater. 103, 30–33 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Pop-Ghe, P., Stock, N. & Quandt, E. Suppression of abnormal grain growth in K0.5Na0.5NbO3: phase transitions and compatibility. Sci. Rep. 9, 19775 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Liang, Y. G. et al. Tuning the hysteresis of a metal-insulator transition via lattice compatibility. Nat. Commun. 11, 3539 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wegner, M., Gu, H., James, R. D. & Quandt, E. Correlation between phase compatibility and efficient energy conversion in Zr-doped barium titanate. Sci. Rep. 10, 3496 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gopakumar, A. M., Balachandran, P. V., Xue, D., Gubernatis, J. E. & Lookman, T. Multi-objective optimization for materials discovery via adaptive design. Sci. Rep. 8, 3738 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chen, Y. et al. Machine learning assisted multi-objective optimization for materials processing parameters: a case study in Mg alloy. J. Alloys Compd. 844, 156159 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Kriven, W. M., Fraser, W. L. & Kennedy, S. W. in Science and Technology of Zirconia, Advances in Ceramics Vol. 3 (eds. Heuer, A. H. & Hobbs, L. W.) 82–97 (American Ceramic Society, 1981).

  • Lukas, H. L., Fries, S. G. & Sundman, B. Computational Thermodynamics: The Calphad Method (Cambridge Univ. Press, 2007).

  • Saenko, I., Ilatovskaia, M., Savinykh, G. & Fabrichnaya, O. Experimental investigation of phase relations and thermodynamic properties in the ZrO2–TiO2 system. J. Am. Ceram. Soc. 101, 386–399 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Wang, C., Zinkevich, M. & Aldinger, F. The zirconia-hafnia system: DTA measurements and thermodynamic calculations. J. Am. Ceram. Soc. 89, 3751–3758 (2006).

    CAS 
    Article 

    Google Scholar
     

  • Park, J. et al. Thermodynamic assessment of the ZrO2-TiO2 system. Korean J. Ceram. 7, 11–15 (2001).


    Google Scholar
     

  • Xue, D. et al. Accelerated search for materials with targeted properties by adaptive design. Nat. Commun. 7, 11241 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Trehern, W., Ortiz-Ayala, R., Atli, K. C., Arroyave, R. & Karaman, I. Data-driven shape memory alloy discovery using artificial intelligence materials selection (AIMS) framework. Acta Mater. 228, 117751 (2022).

    CAS 
    Article 

    Google Scholar
     

  • Pang, E. L., McCandler, C. A. & Schuh, C. A. Reduced cracking in polycrystalline ZrO2-CeO2 shape-memory ceramics by meeting the cofactor conditions. Acta Mater. 177, 230–239 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Gu, H., Bumke, L., Chluba, C., Quandt, E. & James, R. D. Phase engineering and supercompatibility of shape memory alloys. Mater. Today 21, 265–277 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Chluba, C. et al. Ultralow-fatigue shape memory alloy films. Science 348, 1004–1007 (2015).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bannister, M. J. & Barnes, J. M. Solubility of TiO2 in ZrO2. J. Am. Ceram. Soc. 69, C269–C271 (1986).

    CAS 
    Article 

    Google Scholar
     

  • Evirgen, A. et al. Relationship between crystallographic compatibility and thermal hysteresis in Ni-rich NiTiHf and NiTiZr high temperature shape memory alloys. Acta Mater. 121, 374–383 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Miyazaki, S. in Shape Memory Alloys (eds Fremond, M. & Miyazaki, S.) 69–147 (Springer, 1996).

  • Kainuma, R., Takahashi, S. & Ishida, K. Ductile shape memory alloys of the Cu-Al-Mn system. J. Phys. IV 5, 961–966 (1995).

    CAS 

    Google Scholar
     

  • Maki, T. Microstructure and mechanical behaviour of ferrous martensite. Mater. Sci. Forum 56–58, 157–168 (1990).


    Google Scholar
     

  • Balachandran, P. V., Broderick, S. R. & Rajan, K. Identifying the ‘inorganic gene’ for high-temperature piezoelectric perovskites through statistical learning. Proc. R. Soc. A 467, 2271–2290 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ramprasad, R., Batra, R., Pilania, G., Mannodi-Kanakkithodi, A. & Kim, C. Machine learning in materials informatics: recent applications and prospects. npj Comput. Mater. 3, 54 (2017).

    ADS 
    Article 

    Google Scholar
     

  • Xue, D. et al. An informatics approach to transformation temperatures of NiTi-based shape memory alloys. Acta Mater. 125, 532–541 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Meredig, B. & Wolverton, C. Dissolving the periodic table in cubic zirconia: data mining to discover chemical trends. Chem. Mater. 26, 1985–1991 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Xue, D. et al. Accelerated search for BaTiO3-based piezoelectrics with vertical morphotropic phase boundary using Bayesian learning. Proc. Natl Acad. Sci. USA 113, 13301–13306 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Yuan, R. et al. Accelerated discovery of large electrostrains in BaTiO3-based piezoelectrics using active learning. Adv. Mater. 30, 1702884 (2018).

    Article 

    Google Scholar
     

  • Source link