May 6, 2024
Magnetic-field-sensitive charge density waves in the superconductor UTe2 – Nature

Magnetic-field-sensitive charge density waves in the superconductor UTe2 – Nature

  • Sigrist, M. & Ueda, K. Phenomenological theory of unconventional superconductivity. Rev. Mod. Phys. 63, 239 (1991).

    ADS 
    CAS 

    Google Scholar
     

  • Reed, N. & Green, D. Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum Hall effect. Phys. Rev. B 61, 10267 (2000).

    ADS 

    Google Scholar
     

  • Kitaev, A. Y. Unpaired Majorana fermions in quantum wires. Phys.-Usp. 44, 131 (2001).

    ADS 

    Google Scholar
     

  • Ivanov, D. A. Non-Abelian statistics of half-quantum vortices in p-wave superconductors. Phys. Rev. Lett. 86, 268 (2001).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ran, S. et al. Nearly ferromagnetic spin-triplet superconductivity. Science 365, 684–687 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Aoki, D. et al. Unconventional superconductivity in heavy fermion UTe2. J. Phys. Soc. Jpn 88, 043702 (2019).

    ADS 

    Google Scholar
     

  • Ran, S. et al. Extreme magnetic field-boosted superconductivity. Nat. Phys. 15, 1250–1254 (2019).

    CAS 

    Google Scholar
     

  • Aoki, D. et al. Unconventional superconductivity in UTe2. J. Phys. Condens. Matter 34, 243002 (2022).

    ADS 
    CAS 

    Google Scholar
     

  • Jiao, L. et al. Chiral superconductivity in heavy-fermion metal UTe2. Nature 579, 523–527 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hayes, I. M. et al. Multicomponent superconducting order parameter in UTe2. Science 373, 797–801 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Shishidou, T., Suh, H. G., Brydon, P. M. R., Weinert, M. & Agterberg, D. Topological band and superconductivity in UTe2. Phys. Rev. B 103, 104504 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Nakamine, G. et al. Superconducting properties of heavy fermion UTe2 revealed by 125Te-nuclear magnetic resonance. J. Phys. Soc. Jpn 88, 113703 (2019).

    ADS 

    Google Scholar
     

  • Metz, T. et al. Point-node gap structure of the spin-triplet superconductor UTe2. Phys. Rev. B 100, 220504(R) (2019).

    ADS 

    Google Scholar
     

  • Kittaka, S. et al. Orientation of point nodes and nonunitary triplet pairing tuned by the easy-axis magnetization in UTe2. Phys. Rev. Res. 2, 032014(R) (2020).


    Google Scholar
     

  • Bae, S. et al. Anomalous normal fluid response in a chiral superconductor UTe2. Nat. Commun. 12, 2644 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, Y., Madhavan, V. & Raghu, S. Majorana fermion arcs and the local density of states of UTe2. Phys. Rev. B 105, 174520 (2022).

    ADS 
    CAS 

    Google Scholar
     

  • Hutanu, V. et al. Low temperature crystal structure of the unconventional spin-triplet superconductor UTe2 from single-crystal neutron diffraction. Acta Cryst. B76, 137–143 (2020).


    Google Scholar
     

  • Setyawan, W. & Curtarolo, S. High-throughput electronic band structure calculations: challenges and tools. Comput. Mater. Sci. 49, 299–312 (2010).


    Google Scholar
     

  • Fradkin, E., Kivelson, S. A. & Tranquada, J. M. Colloquium: Theory of intertwined orders in high temperature superconductors. Rev. Mod. Phys. 87, 457 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • Himeda, A., Kato, T. & Ogata, M. Stripe states with spatially oscillating d-wave superconductivity in the two-dimensional t−t′−J model. Phys. Rev. Lett. 88, 117001 (2002).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Berg, E. et al. Dynamical layer decoupling in a stripe-ordered high-Tc superconductor. Phys. Rev. Lett. 99, 127003 (2007).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Berg, E., Fradkin, E. & Kivelson, S. A. Theory of the striped superconductor. Phys. Rev. B 79, 064515 (2009).

    ADS 

    Google Scholar
     

  • Wang, Y., Agterberg, D. F. & Chubukov, A. Coexistence of charge-density-wave and pair-density-wave orders in underdoped cuprates. Phys. Rev. Lett. 114, 197001 (2015).

    ADS 
    PubMed 

    Google Scholar
     

  • Dai, Z., Zhang, Y.-H., Senthil, T. & Lee, P. A. Pair-density waves, charge-density waves, and vortices in high-Tc cuprates. Phys. Rev. B 97, 174511 (2018).

  • Agterberg, D. F. et al. The physics of pair-density waves: cuprate superconductors and beyond. Annu. Rev. Condens. Matter Phys. 11, 231–270 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Fulde, P. & Ferrell, R. A. Superconductivity in a strong spin-exchange field. Phys. Rev. 135, A550–A563 (1964).

    ADS 

    Google Scholar
     

  • Larkin, A. I. & Ovchinnikov, Y. I. Inhomogeneous state of superconductors. Sov. Phys. JETP 20, 762–769 (1965).

    MathSciNet 

    Google Scholar
     

  • Hanaguri, T. et al. A ‘checkerboard’ electronic crystal state in lightly hole-doped Ca2-xNaxCuO2Cl2. Nature 430, 1001–1005 (2004).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • McElroy, K. et al. Coincidence of checkerboard charge order and antinodal state decoherence in strongly underdoped superconducting Bi2Sr2CaCu2O8+δ. Phys. Rev. Lett. 94, 197005 (2005).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kohsaka, Y. et al. An intrinsic bond-centered electronic glass with unidirectional domains in underdoped cuprates. Science 315, 1380–1385 (2007).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mesaros, A. et al. Commensurate 4a0-period charge density modulations throughout the Bi2Sr2CaCu2O8+x pseudogap regime. Proc. Natl Acad. Sci. USA 113, 12661–12666 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hamidian, M. et al. Detection of a Cooper-pair density wave in Bi2Sr2CaCu2O8+x. Nature 532, 343–347 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ruan, W. et al. Visualization of the periodic modulation of Cooper pairing in a cuprate superconductor. Nat. Phys. 14, 1178–1182 (2018).

    CAS 

    Google Scholar
     

  • Edkins, S. D. et al. Magnetic field–induced pair density wave state in the cuprate vortex halo. Science 364, 976–980 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ortiz, B. R. et al. New kagome prototype materials: discovery of KV3Sb5, RbV3Sb5, and CsV3Sb5. Phys. Rev. Mater. 3, 094407 (2019).

    CAS 

    Google Scholar
     

  • Jiang, Y. X. et al. Unconventional chiral charge order in kagome superconductor KV3Sb5. Nat. Mater. 20, 1353–1357 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, H. et al. Cascade of correlated electron states in the kagome superconductor CsV3Sb5. Nature 599, 216–221 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, H. et al. Roton pair density wave in a strong-coupling Kagome superconductor. Nature 599, 222–228 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Neupert, T. et al. Charge order and superconductivity in kagome materials. Nat. Phys. 18, 137–143 (2022).

    CAS 

    Google Scholar
     

  • Mielke, C. et al. Time-reversal symmetry-breaking charge order in a kagome superconductor. Nature 602, 245–250 (2022).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Nie, L. et al. Charge-density-wave-driven electronic nematicity in a kagome superconductor. Nature 604, 59–64 (2022).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Duan, C. et al. Incommensurate spin fluctuations in the spin-triplet superconductor candidate UTe2. Phys. Rev. Lett. 125, 237003 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gelessus, A., Thiel, W. & Weber, W. Multipoles and symmetry. J. Chem. Educ. 72, 505–508 (1995).

    CAS 

    Google Scholar
     

  • Berg, E., Fradkin, E. & Kivelson, S. Charge-4e superconductivity from pair-density-wave order in certain high-temperature superconductors. Nat. Phys. 5, 830–833 (2009).

    CAS 

    Google Scholar
     

  • Source link