May 20, 2024
Many-body cavity quantum electrodynamics with driven inhomogeneous emitters – Nature

Many-body cavity quantum electrodynamics with driven inhomogeneous emitters – Nature

  • Haroche, S. & Kleppner, D. Cavity quantum electrodynamics. Phys. Today 42, 24–30 (1989).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Awschalom, D. D., Hanson, R., Wrachtrup, J. & Zhou, B. B. Quantum technologies with optically interfaced solid-state spins. Nat. Photon. 12, 516–527 (2018).

  • Walther, H., Varcoe, B. T., Englert, B.-G. & Becker, T. Cavity quantum electrodynamics. Rep. Prog. Phys. 69, 1325 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Thompson, R., Rempe, G. & Kimble, H. Observation of normal-mode splitting for an atom in an optical cavity. Phys. Rev. Lett. 68, 1132 (1992).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Englund, D. et al. Controlling cavity reflectivity with a single quantum dot. Nature 450, 857–861 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lukin, D. M. et al. Two-emitter multimode cavity quantum electrodynamics in thin-film silicon carbide photonics. Phys. Rev. X 13, 011005 (2023).


    Google Scholar
     

  • Kurucz, Z., Wesenberg, J. H. & Mølmer, K. Spectroscopic properties of inhomogeneously broadened spin ensembles in a cavity. Phys. Rev. A 83, 053852 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Diniz, I. et al. Strongly coupling a cavity to inhomogeneous ensembles of emitters: potential for long-lived solid-state quantum memories. Phys. Rev. A 84, 063810 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Afzelius, M. & Simon, C. Impedance-matched cavity quantum memory. Phys. Rev. A 82, 022310 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Williamson, L. A., Chen, Y.-H. & Longdell, J. J. Magneto-optic modulator with unit quantum efficiency. Phys. Rev. Lett. 113, 203601 (2014).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Dicke, R. H. Coherence in spontaneous radiation processes. Phys. Rev. 93, 99–110 (1954).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Novikova, I., Walsworth, R. L. & Xiao, Y. Electromagnetically induced transparency-based slow and stored light in warm atoms. Laser Photonics Rev. 6, 333–353 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Bohnet, J. G. et al. A steady-state superradiant laser with less than one intracavity photon. Nature 484, 78–81 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Blais, A., Grimsmo, A. L., Girvin, S. M. & Wallraff, A. Circuit quantum electrodynamics. Rev. Mod. Phys. 93, 025005 (2021).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Duan, L.-M. & Kimble, H. J. Scalable photonic quantum computation through cavity-assisted interactions. Phys. Rev. Lett. 92, 127902 (2004).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Dordević, T. et al. Entanglement transport and a nanophotonic interface for atoms in optical tweezers. Science 373, 1511–1514 (2021).

    Article 
    ADS 
    MathSciNet 
    PubMed 
    MATH 

    Google Scholar
     

  • Mücke, M. et al. Electromagnetically induced transparency with single atoms in a cavity. Nature 465, 755–758 (2010).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Keller, M., Lange, B., Hayasaka, K., Lange, W. & Walther, H. Continuous generation of single photons with controlled waveform in an ion-trap cavity system. Nature 431, 1075–1078 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Reiserer, A. & Rempe, G. Cavity-based quantum networks with single atoms and optical photons. Rev. Mod. Phys. 87, 1379–1418 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yoshie, T. et al. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature 432, 200–203 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mlynek, J. A., Abdumalikov, A. A., Eichler, C. & Wallraff, A. Observation of Dicke superradiance for two artificial atoms in a cavity with high decay rate. Nat. Commun. 5, 5186 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mirhosseini, M. et al. Cavity quantum electrodynamics with atom-like mirrors. Nature 569, 692–697 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Evans, R. E. et al. Photon-mediated interactions between quantum emitters in a diamond nanocavity. Science 362, 662–665 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Norcia, M. A. et al. Cavity-mediated collective spin-exchange interactions in a strontium superradiant laser. Science 361, 259–262 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Angerer, A. et al. Superradiant emission from colour centres in diamond. Nat. Phys. 14, 1168–1172 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Periwal, A. et al. Programmable interactions and emergent geometry in an array of atom clouds. Nature 600, 630–635 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Blaha, M., Johnson, A., Rauschenbeutel, A. & Volz, J. Beyond the Tavis-Cummings model: revisiting cavity QED with ensembles of quantum emitters. Phys. Rev. A 105, 013719 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Temnov, V. V. & Woggon, U. Superradiance and subradiance in an inhomogeneously broadened ensemble of two-level systems coupled to a low-Q cavity. Phys. Rev. Lett. 95, 243602 (2005).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Greiner, C., Boggs, B. & Mossberg, T. W. Superradiant emission dynamics of an optically thin material sample in a short-decay-time optical cavity. Phys. Rev. Lett. 85, 3793–3796 (2000).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Thiel, C., Böttger, T. & Cone, R. Rare-earth-doped materials for applications in quantum information storage and signal processing. J. Lumin. 131, 353–361 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Zhong, T., Rochman, J., Kindem, J. M., Miyazono, E. & Faraon, A. High quality factor nanophotonic resonators in bulk rare-earth doped crystals. Opt. Express 24, 536–544 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Businger, M. et al. Non-classical correlations over 1250 modes between telecom photons and 979-nm photons stored in 171Yb3+:Y2SiO5. Nat. Commun. 13, 6438 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lauk, N. et al. Perspectives on quantum transduction. Quant. Sci. Technol. 5, 020501 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Kindem, J. M. et al. Characterization of 171Yb3+:YVO4 for photonic quantum technologies. Phys. Rev. B 98, 024404 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Reitz, M., Sommer, C. & Genes, C. Cooperative quantum phenomena in light-matter platforms. PRX Quantum 3, 010201 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Qin, H., Ding, M. & Yin, Y. Induced transparency with optical cavities. Adv. Photonics Res. 1, 2000009 (2020).

    Article 

    Google Scholar
     

  • Waks, E. & Vuckovic, J. Dipole induced transparency in drop-filter cavity-waveguide systems. Phys. Rev. Lett. 96, 153601 (2006).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • King, G. G. G., Barnett, P. S., Bartholomew, J. G., Faraon, A. & Longdell, J. J. Probing strong coupling between a microwave cavity and a spin ensemble with Raman heterodyne spectroscopy. Phys. Rev. B 103, 214305 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Tavis, M. & Cummings, F. W. Exact solution for an N-molecule—radiation-field Hamiltonian. Phys. Rev. 170, 379–384 (1968).

    Article 
    ADS 

    Google Scholar
     

  • Cipris, A. et al. Subradiance with saturated atoms: population enhancement of the long-lived states. Phys. Rev. Lett. 126, 103604 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Glicenstein, A., Ferioli, G., Browaeys, A. & Ferrier-Barbut, I. From superradiance to subradiance: exploring the many-body Dicke ladder. Opt. Lett. 47, 1541–1544 (2022).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Shen, Z. & Dogariu, A. Subradiant directional memory in cooperative scattering. Nat. Photon. 16, 148–153 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ferioli, G., Glicenstein, A., Henriet, L., Ferrier-Barbut, I. & Browaeys, A. Storage and release of subradiant excitations in a dense atomic cloud. Phys. Rev. X 11, 021031 (2021).

    CAS 

    Google Scholar
     

  • Verstraete, F., Wolf, M. M. & Ignacio Cirac, J. Quantum computation and quantum-state engineering driven by dissipation. Nat. Phys. 5, 633–636 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Kastoryano, M. J., Reiter, F. & Sørensen, A. S. Dissipative preparation of entanglement in optical cavities. Phys. Rev. Lett. 106, 090502 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lewis-Swan, R. J. et al. Cavity-QED quantum simulator of dynamical phases of a Bardeen-Cooper-Schrieffer superconductor. Phys. Rev. Lett. 126, 173601 (2021).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Gross, M. & Haroche, S. Superradiance: an essay on the theory of collective spontaneous emission. Phys. Rep. 93, 301–396 (1982).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bartholomew, J. G. et al. On-chip coherent microwave-to-optical transduction mediated by ytterbium in YVO4. Nat. Commun. 11, 3266 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shcherbatenko, M. et al. Potential of a superconducting photon counter for heterodyne detection at the telecommunication wavelength. Opt. Express 24, 30474–30484 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Y., Zhang, Y.-X. & Mølmer, K. Monte-Carlo simulations of superradiant lasing. New J. Phys. 20, 112001 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Source link