April 26, 2024
Mapping internal temperatures during high-rate battery applications – Nature

Mapping internal temperatures during high-rate battery applications – Nature

  • Spinner, N. et al. Novel 18650 lithium-ion battery surrogate cell design with anisotropic thermophysical properties for studying failure events. J. Power Sources 312, 1–11 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Yu, X. et al. Simultaneous operando measurements of the local temperature, state of charge, and strain inside a commercial lithium-ion battery pouch cell. J. Electrochem. Soc. 165, A1578 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Kok, M. et al. Virtual unrolling of spirally-wound lithium-ion cells for correlative degradation studies and predictive fault detection. Sustainable Energy Fuels 3, 2972–2976 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Ziesche, R. F. et al. 4D imaging of lithium-batteries using correlative neutron and X-ray tomography with a virtual unrolling technique. Nat. Commun. 11, 777 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sripad, S., Bills, A. & Viswanathan, V. A review of safety considerations for batteries in aircraft with electric propulsion. MRS Bull. 46, 435–442 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Li, M. et al. Fast charging lithium-ion batteries for a new era of electric vehicles. Cell Rep. Phys. Sci. 1, 100212 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Tomaszewska, A. et al. Lithium-ion battery fast charging: a review. eTransportation 1, 100011 (2019).

    Article 

    Google Scholar
     

  • Griffith, K. J. et al. Niobium tungsten oxides for high-rate lithium-ion energy storage. Nature 559, 556–563 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Billaud, J. et al. Magnetically aligned graphite electrodes for high-rate performance lithium-ion batteries. Nat. Energy 1, 16097 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Lain, M. & Kendrick, E. Understanding the limitations of lithium ion batteries at high rates. J. Power Sources 493, 229690 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Ma, S. et al. Temperature effect and thermal impact in lithium-ion batteries: a review. Progr. Nat. Sci. Mater. Inter. 28, 653–666 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Finegan, D. et al. Tracking internal temperature and structural dynamics during nail penetration of lithium-ion cells. J. Electrochem. Soc. 164, A3285 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Han, A. et al. Effect of humidity on properties of lithium-ion batteries. Int. J. Electrochem. Sci. 16, 210554 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Hagart-Alexander, C. in Instrumentation Reference Book 4th edn (ed. Boyes, W.) Ch. 21, 269–326 (Elsevier, 2010).

  • Houx, J. L. & Kramer, D. X-ray tomography for lithium ion battery electrode characterisation—a review. Energy Rep. 7, 9–14 (2021).

    Article 

    Google Scholar
     

  • Petz, D. et al. Lithium distribution and transfer in high-power 18650-type lithium-ion cells at multiple length scales. Energy Storage Mater. 41, 546–553 (2021).

    Article 

    Google Scholar
     

  • Xu, C. et al. Future material demand for automotive lithium-based batteries. Commun. Mater. 1, 99 (2020).

  • Ding, Y. et al. Automotive lithium-ion batteries: current status and future perspectives. Electrochem. Energ. Rev. 2, 1–28 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Heenan, T. et al. Identifying the origins of microstructural defects such as cracking within Ni-rich NMC811 cathode particles for lithium-ion batteries. Adv. Energy Mater. 10, 2002655 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Finegan, D. et al. Spatially resolving lithiation in silicon–graphite composite electrodes via in situ high-energy X-ray diffraction computed tomography. Nano Lett. 19, 3811–3820 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maleki, H. et al. Thermal properties of lithium-ion battery components. J. Electrochem. Soc. 146, 947 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Tranter, T. et al. Communication—prediction of thermal issues for larger format 4680 cylindrical cells and their mitigation with enhanced current collection. J. Electrochem. Soc. 167, 160544 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Offer, G. et al. Cool metric for lithium-ion batteries could spur progress. Nature 582, 485–487 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Heenan, T. M. M. et al. Data for an advanced microstructural and electrochemical datasheet on 18650 Li-ion batteries with nickel-rich NMC811 cathodes and graphite-silicon anodes. Data Brief. 32, 106033 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vaughan, G. B. M. et al. ID15A at the ESRF—a beamline for high speed operando X-ray diffraction, diffraction tomography and total scattering. J. Appl. Cryst. 27, 515–528 (2020).

    CAS 

    Google Scholar
     

  • Yaoita, K. et al. Angle-dispersive diffraction measurement system for high-pressure experiments using a multichannel collimator. Rev. Sci. Instrum. 68, 2106–2110 (1997)

  • Morad, G. et al. High efficiency multichannel collimator for structural studies of liquids and low-Z materials at high pressures and temperatures. Rev. Sci. Instrum. 82, 023904 (2011).

    Article 

    Google Scholar
     

  • Ashiotis, G. et al. The fast azimuthal integration Python library: PyFAI. J. Appl. Cryst. 48, 510–519 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Coelho, A. TOPAS and TOPAS-Academic: an optimization program integrating computer algebra and crystallographic objects written in C++. J. Appl. Cryst. 51, 210–218 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Finegan, D. et al. Spatial dynamics of lithiation and lithium plating during high-rate operation of graphite electrodes. Energy Environ. Sci. 13, 2570–2584 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Source link