May 8, 2024
Measurement of 19F(p, γ)20Ne reaction suggests CNO breakout in first stars – Nature

Measurement of 19F(p, γ)20Ne reaction suggests CNO breakout in first stars – Nature

  • Clarkson, O. & Herwig, F. Convective H–He interactions in massive population III stellar evolution models. Mon. Not. R. Astron. Soc. 500, 2685–2703 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Heger, A. & Woosley, S. E. Nucleosynthesis and evolution of massive metal-free stars. Astrophys. J. 724, 341–373 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Angulo, C. et al. A compilation of charged-particle induced thermonuclear reaction rates. Nucl. Phys. A 656, 3–183 (1999).

    Article 
    ADS 

    Google Scholar
     

  • Arnould, M., Mowlavi, N. & Champagne, A. E. In Stellar Evolution: What Should Be Done?, Proc. 32nd Liège International Astrophysical Colloquium (eds Noels, A. et al) 17–29 (Université de Liège, 1995).

  • deBoer, R. J. et al. 19F(p, γ)20Ne and 19F(p, α)16O reaction rates and their effect on calcium production in Population III stars from hot CNO breakout. Phys. Rev. C 103, 055815 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Keller, S. C. et al. A single low-energy, iron-poor supernova as the source of metals in the star SMSS J031300.36–670839.3. Nature 506, 463–466 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kang, K. J. et al. Status and prospects of a deep underground laboratory in China. J. of Phys. Conf. Ser. 203, 012028 (2010).

    Article 

    Google Scholar
     

  • Wu, Y. C. et al. Measurement of cosmic ray flux in the China JinPing underground laboratory. Chin. Phys. C 37, 086001 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Witze, A. The James Webb Space Telescope aims to unlock the early Universe. Nature 600, 208–212 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Burbidge, E. M., Burbidge, G. R., Fowler, W. A. & Hoyle, F. Synthesis of the elements in stars. Rev. Mod. Phys. 29, 547–654 (1957).

    Article 
    ADS 

    Google Scholar
     

  • Rolfs, C. E. & Rodney, W. S. Cauldrons in the Cosmos (Univ. Chicago Press, 1988).

  • Adelberger, E. G. et al. Solar fusion cross sections. II. The pp chain and CNO cycles. Rev. Mod. Phys. 83, 195–245 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wiescher, M., Görres, J. & Schatz, H. Break-out reactions from the CNO cycles. J. Phys. G 25, R133–R161 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Frebel, A. & Norris, J. E. Near-field cosmology with extremely metal-poor stars. Ann. Rev. Astron. Astrophys. 53, 631–688 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Takahashi, K., Umeda, H. & Yoshida, T. Stellar yields of rotating first stars. I. Yields of weak supernovae and abundances of carbon-enhanced hyper-metal-poor stars. Astrophys. J. 794, 40 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Ezer, D. & Cameron, A. G. W. The evolution of hydrogen–helium stars. Astrophys. Space Sci. 14, 399–421 (1971).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chan, C., Müller, B. & Heger, A. Black hole formation and fallback during the supernova explosion of a 40M star. Astrophys. J. 852, L19 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Clarkson, O., Herwig, F. & Pignatari, M. Pop III i-process nucleosynthesis and the elemental abundances of SMSS J0313-6708 and the most iron-poor stars. Mon. Not. R. Astron. Soc. 474, L37–L41 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Limongi, M. & Chieffi, A. Presupernova evolution and explosive nucleosynthesis of zero metal massive stars. Astrophys. J. Supp. Ser. 199, 38 (2012).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Sinclair, R. M. Gamma radiation from certain nuclear reactions. Phys. Rev. 93, 1082–1086 (1954).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Farney, G. K., Given, H. H., Kern, B. D. & Hahn, T. M. High-energy gamma rays from the proton bombardment of fluorine. Phys. Rev. 97, 720–725 (1955).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Keszthelyi, L., Berkes, I., Demeter, I. & Fodor, I. Resonances in F19 + p reactions at 224 and 340 keV proton energies. Nucl. Phys. 29, 241–251 (1962).

    Article 

    Google Scholar
     

  • Berkes, I., Dézsi, I., Fodor, I. & Keszthelyi, L. The resonance at 483 and 597 keV proton energies in F19 + p reactions. Nucl. Phys. 43, 103–109 (1963).

    Article 
    CAS 

    Google Scholar
     

  • Subotíc, K. M., Ostojíc, R. & Stepančić, B. Z. Study of the 19F(p, γ)20Ne radiative capture reaction from 0.2–1.2 MeV. Nucl. Phys. A 331, 491–501 (1979).

    Article 
    ADS 

    Google Scholar
     

  • Couture, A. et al. Measurement of the 19F(p, γ)20Ne reaction and interference terms from Ec.m. = 200–760 keV. Phys. Rev. C 77, 015802 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Spyrou, K. et al. Cross section and resonance strength measurements of 19F(p,αγ)16O at Ep = 200–800 keV. Eur. Phys. J. A 7, 79–85 (2000).

  • Williams, M. et al. New measurement of the Ec.m. = 323 keV resonance in the 19F(p, γ)20Ne reaction. Phys. Rev. C 103, 055805 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Broggini, C., Bemmerer, D., Guglielmetti, A. & Menegazzo, R. LUNA: nuclear astrophysics deep underground. Ann. Rev. Nucl. Part. Sci. 60, 53–73 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Liu, W. P. et al. Progress of Jinping Underground laboratory for Nuclear Astrophysics (JUNA). Sci. China Phys. Mech. Astron. 59, 642001 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Wu, Q. et al. Design of an intense ion source and LEBT for Jinping Underground Nuclear Astrophysics experiments. Nucl. Instr. Meth. A 830, 214–218 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhang, L. Y. et al. Strong and durable fluorine-implanted targets developed for deep underground nuclear astrophysical experiments. Nucl. Instr. Meth. B 496, 9–15 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhang, L. Y. et al. Direct measurement of the astrophysical 19F(p, αγ)16O reaction in the deepest operational underground laboratory. Phys. Rev. Lett. 127, 152702 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Su, J. et al. First result from the Jinping Underground Nuclear Astrophysics experiment JUNA: precise measurement of the 92-keV 25Mg(p, γ)26Al resonance. Sci. Bull. 67, 125–132 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Azuma, R. E. et al. AZURE: An R-matrix code for nuclear astrophysics. Phys. Rev. C 81, 045805 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Uberseder, E. & deBoer, R. J. AZURE2 User Manual (2015).

  • Agostinelli, S. et al. Geant4—a simulation toolkit. Nucl. Instrum. Meth. A 506, 250–303 (2003).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • He, J. J. et al. A proposed direct measurement of cross section at Gamow window for key reaction 19F(p, α)16O in asymptotic giant branch stars with a planned accelerator in CJPL. Sci. China Phys. Mech. Astron. 59, 652001 (2016).

    Article 

    Google Scholar
     

  • Foreman-Mackey, D. et al. The MCMC hammer. Publ. Astron. Soc. Pacif. 125, 306–312 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Kious, M. Determination of nuclear reaction rates leading to the stellar nucleosynthesis of fluorine. PhD thesis, Université de Paris-Sud (1990).

  • Rauscher, T. & Thielemann, F.-K. Astrophysical reaction rates from statistical model calculations. At. Data Nucl. Data Tables 75, 1–351 (2000).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Weaver, T. A., Zimmerman, G. B. & Woosley, S. E. Presupernova evolution of massive stars. Astrophys. J. 225, 1021–1029 (1978).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Pitrou, C., Coc, A., Uzan, J.-P. & Vangioni, E. Precision big bang nucleosynthesis with the new code PRIMAT. JPS Conf. Proc. 31, 011034 (2020).

    MATH 

    Google Scholar
     

  • Source link