May 23, 2024
Metabolic regulation of species-specific developmental rates – Nature

Metabolic regulation of species-specific developmental rates – Nature

  • Matsuda, M. et al. Species-specific segmentation clock periods are due to differential biochemical reaction speeds. Science 369, 1450 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Rayon, T. et al. Species-specific pace of development is associated with differences in protein stability. Science 369, eaba7667 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Hoyle, N. P. & Ish-Horowicz, D. Transcript processing and export kinetics are rate-limiting steps in expressing vertebrate segmentation clock genes. Proc. Natl Acad. Sci. USA 110, E4316–E4324 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Stearns, S. C. The evolution of life history traits: a critique of the theory and a review of the data. Annu. Rev. Ecol. Syst. 8, 145–171 (1977).

    Article 

    Google Scholar
     

  • Ricklefs, R. E. Embryo development and ageing in birds and mammals. Proc. Biol. Sci. 273, 2077–2082 (2006).


    Google Scholar
     

  • Blagosklonny, M. V. Big mice die young but large animals live longer. Aging 5, 227–233 (2013).

    Article 

    Google Scholar
     

  • Otis, E. M. & Brent, R. Equivalent ages in mouse and human embryos. Anat. Rec. 120, 33–63 (1954).

    Article 
    CAS 

    Google Scholar
     

  • Schröter, C. et al. Dynamics of zebrafish somitogenesis. Dev. Dyn. 237, 545–553 (2008).

    Article 

    Google Scholar
     

  • Pourquié, O. Vertebrate segmentation: from cyclic gene networks to scoliosis. Cell 145, 650–663 (2011).

    Article 

    Google Scholar
     

  • Hubaud, A. & Pourquie, O. Signalling dynamics in vertebrate segmentation. Nat. Rev. Mol. Cell Biol. 15, 709–721 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Diaz-Cuadros, M. et al. In vitro characterization of the human segmentation clock. Nature 580, 113–118 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Matsuda, M. et al. Recapitulating the human segmentation clock with pluripotent stem cells. Nature 580, 124–129 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chu, L. F. et al. An in vitro human segmentation clock model derived from embryonic stem cells. Cell Rep. 28, 2247–2255.e5 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Matsumiya, M. et al. ES cell-derived presomitic mesoderm-like tissues for analysis of synchronized oscillations in the segmentation clock. Development 145, dev156836 (2018).

    Article 

    Google Scholar
     

  • Hubaud, A. et al. Excitable dynamics and Yap-dependent mechanical cues drive the segmentation clock. Cell 171, 668–682.e11 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Johnson, M. H. & Day, M. L. Egg timers: how is developmental time measured in the early vertebrate embryo? Bioessays 22, 57–63 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Kleiber, M. Body size and metabolic rate. Physiol. Rev. 27, 511–541 (1947).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Martin, R. D., Genoud, M. & Hemelrijk, C. K. Problems of allometric scaling analysis: examples from mammalian reproductive biology. J. Exp. Biol. 208, 1731–1747 (2005).

    Article 

    Google Scholar
     

  • Feijó Delgado, F. et al. Intracellular water exchange for measuring the dry mass, water mass and changes in chemical composition of living cells. PLoS ONE 8, e67590 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Miettinen, T. P. et al. Single-cell monitoring of dry mass and dry mass density reveals exocytosis of cellular dry contents in mitosis. eLife 11, e76664 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Oginuma, M. et al. A gradient of glycolytic activity coordinates FGF and Wnt signaling during elongation of the body axis in amniote embryos. Dev. Cell 40, 342–353.e10 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Bulusu, V. et al. Spatiotemporal analysis of a glycolytic activity gradient linked to mouse embryo mesoderm development. Dev. Cell 40, 331–341.e4 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Porter, R. K. Allometry of mammalian cellular oxygen consumption. Cell. Mol. Life Sci. 58, 815–822 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Porter, R. K., Hulbert, A. J. & Brand, M. D. Allometry of mitochondrial proton leak: influence of membrane surface area and fatty acid composition. Am. J. Physiol. 271, R1550–R1560 (1996).

    CAS 

    Google Scholar
     

  • Harris, M. Pyruvate blocks expression of sensitivity to antimycin A and chloramphenicol. Somatic Cell Genet. 6, 699–708 (1980).

    Article 
    CAS 

    Google Scholar
     

  • Luengo, A. et al. Increased demand for NAD+ relative to ATP drives aerobic glycolysis. Mol. Cell 81, 691–707.e6 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Hung, Y. P. et al. Imaging cytosolic NADH–NAD+ redox state with a genetically encoded fluorescent biosensor. Cell Metab. 14, 545–554 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Titov, D. V. et al. Complementation of mitochondrial electron transport chain by manipulation of the NAD+/NADH ratio. Science 352, 231–235 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Merker, M. P. et al. Influence of pulmonary arterial endothelial cells on quinone redox status: effect of hyperoxia-induced NAD(P)H:quinone oxidoreductase 1. Am. J. Physiol. 290, L607–L619 (2006).

    CAS 

    Google Scholar
     

  • Fessel, J. P. & Oldham, W. M. Pyridine dinucleotides from molecules to man. Antioxid. Redox Signal. 28, 180–212 (2017).

    Article 

    Google Scholar
     

  • Williamson, D. H., Lund, P. & Krebs, H. A. The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver. Biochem. J. 103, 514–527 (1967).

    Article 
    CAS 

    Google Scholar
     

  • Veech, R. L., Guynn, R. & Veloso, D. The time-course of the effects of ethanol on the redox and phosphorylation states of rat liver. Biochem. J. 127, 387–397 (1972).

    Article 
    CAS 

    Google Scholar
     

  • das Neves, R. P. et al. Connecting variability in global transcription rate to mitochondrial variability. PLoS Biol. 8, e1000560 (2010).

    Article 

    Google Scholar
     

  • Johnston, I. G. et al. Mitochondrial variability as a source of extrinsic cellular noise. PLoS Comput. Biol. 8, e1002416 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Guantes, R. et al. Global variability in gene expression and alternative splicing is modulated by mitochondrial content. Genome Res. 25, 633–644 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Hidalgo San Jose, L. & Signer, R. A. J. Cell-type-specific quantification of protein synthesis in vivo. Nat. Protoc. 14, 441–460 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Schmidt, E. K. et al. SUnSET, a nonradioactive method to monitor protein synthesis. Nat. Methods 6, 275–277 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Bessho, Y. et al. Periodic repression by the bHLH factor Hes7 is an essential mechanism for the somite segmentation clock. Genes Dev. 17, 1451–1456 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Bonvini, P. et al. Bortezomib-mediated 26S proteasome inhibition causes cell-cycle arrest and induces apoptosis in CD-30+ anaplastic large cell lymphoma. Leukemia 21, 838–842 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Gomez, C. et al. Control of segment number in vertebrate embryos. Nature 454, 335–339 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hosios, A. M. & Vander Heiden, M. G. The redox requirements of proliferating mammalian cells. J. Biol. Chem. 293, 7490–7498 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Covarrubias, A. J. et al. NAD+ metabolism and its roles in cellular processes during ageing. Nat. Rev. Mol. Cell Biol. 22, 119–141 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Fushan, A. A. et al. Gene expression defines natural changes in mammalian lifespan. Aging Cell 14, 352–365 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Bao, X. R. et al. Mitochondrial dysfunction remodels one-carbon metabolism in human cells. eLife 5, e10575 (2016).

    Article 

    Google Scholar
     

  • Mick, E. et al. Distinct mitochondrial defects trigger the integrated stress response depending on the metabolic state of the cell. eLife 9, e49178 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Chal, J. et al. Differentiation of pluripotent stem cells to muscle fiber to model Duchenne muscular dystrophy. Nat. Biotechnol. 33, 962–969 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Chal, J. et al. Recapitulating early development of mouse musculoskeletal precursors of the paraxial mesoderm in vitro. Development 145, dev157339 (2018).

    Article 

    Google Scholar
     

  • Chal, J. et al. Generation of human muscle fibers and satellite-like cells from human pluripotent stem cells in vitro. Nat. Protoc. 11, 1833–1850 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Tomishima, M. in StemBook (Harvard Stem Cell Institute, 2008).

  • Oceguera-Yanez, F. et al. Engineering the AAVS1 locus for consistent and scalable transgene expression in human iPSCs and their differentiated derivatives. Methods 101, 43–55 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Yellen, G. & Mongeon, R. Quantitative two-photon imaging of fluorescent biosensors. Curr. Opin. Chem. Biol. 27, 24–30 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Aulehla, A. et al. A β-catenin gradient links the clock and wavefront systems in mouse embryo segmentation. Nat. Cell Biol. 10, 186–193 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Dequéant, M. L. et al. A complex oscillating network of signaling genes underlies the mouse segmentation clock. Science 314, 1595–1598 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Krol, A. J. et al. Evolutionary plasticity of segmentation clock networks. Development 138, 2783–2792 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Oppenheim, A. V., Schafer, R. W. & Buck., J. R. Discrete-Time Signal Processing. 2nd edn (Prentice Hall, 1999).

  • Rosenblum, M. & Kurths, J. Synchronization: A Universal Concept in Nonlinear Science (Cambridge Univ. Press, 2003).

  • Bharadwaj, M. S. Preparation and respirometric assessment of mitochondria isolated from skeletal muscle tissue obtained by percutaneous needle biopsy. J. Vis. Exp. 96, 52350 (2015).


    Google Scholar
     

  • Kim, D. et al. SHMT2 drives glioma cell survival in ischaemia but imposes a dependence on glycine clearance. Nature 520, 363–367 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Fernandez, C. A. et al. Correction of 13C mass isotopomer distributions for natural stable isotope abundance. J. Mass Spectrom. 31, 255–262 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Mu, L. et al. Mass measurements during lymphocytic leukemia cell polyploidization decouple cell cycle- and cell size-dependent growth. Proc Natl Acad Sci USA 117, 15659–15665 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sheaff, R., Ilsley, D. & Kuchta, R. Mechanism of DNA polymerase α inhibition by aphidicolin. Biochemistry 30, 8590–8597 (1991).

    Article 
    CAS 

    Google Scholar
     

  • Palmer, G. et al. Studies on the respiratory chain-linked reduced nicotinamide adenine dinucleotide dehydrogenase. XIV. Location of the sites of inhibition of rotenone, barbiturates, and piericidin by means of electron paramagnetic resonance spectroscopy. J. Biol. Chem. 243, 844–847 (1968).

    Article 
    CAS 

    Google Scholar
     

  • Miyadera, H. et al. Atpenins potent and specific inhibitors of mitochondrial complex II (succinate-ubiquinone oxidoreductase). Proc. Natl Acad. Sci. USA 100, 473–477 (2003).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Slater, E. C. The mechanism of action of the respiratory inhibitor antimycin. Biochim. Biophys. Acta Rev. Bioenerg. 301, 129–154 (1973).

    Article 
    CAS 

    Google Scholar
     

  • Keilin, D. The action of sodium azide on cellular respiration and on some catalytic oxidation reactions. Proc. R. Soc. B. Biol. Sci. 121, 165–173 (1936).

    ADS 
    CAS 

    Google Scholar
     

  • Kankotia, S. & Stacpoole, P. W. Dichloroacetate and cancer: new home for an orphan drug? Biochem. Biophys. Acta Rev. Cancer 1846, 617–629 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Benz, R. & McLaughlin, S. The molecular mechanism of action of the proton ionophore FCCP (carbonylcyanide p-trifluoromethoxyphenylhydrazone). Biophys. J. 41, 381–398 (1983).

    Article 
    CAS 

    Google Scholar
     

  • Racker, E. A mitochondrial factor conferring oligomycin sensitivity on soluble mitochondrial ATPase. Biochem. Biophys. Res. Commun. 10, 435–439 (1963).

    Article 
    CAS 

    Google Scholar
     

  • Baliga, B. S., Pronczuk, A. W. & Munro, H. N Mechanism of cycloheximide inhibition of protein synthesis in a cell-free system prepared from rat liver. J. Biol. Chem. 244, 4480–4489 (1969).

    Article 
    CAS 

    Google Scholar
     

  • Fu, Z., Lu, C., Zhang, C. & Qiao, B. PSMA5 promotes the tumorigenic process of prostate cancer and is related to bortezomib resistance. Anti-Cancer Drugs 30, 722–730 (2019).

    Article 

    Google Scholar
     

  • Dick, L. R. et al.  Mechanistic studies on the inactivation of the proteasome by lactacystin in cultured cells. J. Biol. Chem. 272, 182–188 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, M. et al. Warburg effect in chemosensitivity: targeting lactate dehydrogenase-A re-sensitizes taxol-resistant cancer cells to taxol. Mol. Cancer 9, 33 (2010).

    Article 

    Google Scholar
     

  • Aguer, C. et al. Galactose enhances oxidative metabolism and reveals mitochondrial dysfunction in human primary muscle cells. PLoS ONE 6, e28536 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Source link