May 18, 2024
Methane formation driven by reactive oxygen species across all living organisms – Nature

Methane formation driven by reactive oxygen species across all living organisms – Nature

  • Saunois, M. et al. The global methane budget 2000–2017. Earth Syst. Sci. Data 12, 1561–1623 (2020).

    ADS 
    Article 

    Google Scholar
     

  • Keppler, F., Hamilton, J. T. G., Braß, M. & Röckmann, T. Methane emissions from terrestrial plants under aerobic conditions. Nature 439, 187–191 (2006).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • McLeod, A. R. et al. Ultraviolet radiation drives methane emissions from terrestrial plant pectins. New Phytol. 180, 124–132 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lenhart, K. et al. Evidence for methane production by saprotrophic fungi. Nat. Commun. 3, 1046 (2012).

    ADS 
    PubMed 
    Article 

    Google Scholar
     

  • Klintzsch, T. et al. Methane production by three widespread marine phytoplankton species: release rates, precursor compounds, and potential relevance for the environment. Biogeosciences 16, 4129–4144 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Bižić, M. et al. Aquatic and terrestrial cyanobacteria produce methane. Sci. Adv. 6, eaax5343 (2020).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Thauer, R. K. Methyl (alkylalkyl)-coenzyme M reductases: nickel F-430-containing enzymes involved in anaerobic methane formation and in anaerobic oxidation of methane or of short chain alkanes. Biochemistry 58, 5198–5220 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Conrad, R. The global methane cycle: recent advances in understanding the microbial processes involved. Env. Microbiol. Rep. 1, 285–292 (2009).

    CAS 
    Article 

    Google Scholar
     

  • DeLong, E. F. Exploring marine planktonic archaea: then and now. Front. Microbiol. 11, 3527 (2021).

    Article 

    Google Scholar
     

  • Vorholt, J., Kunow, J., Stetter, K. O. & Thauer, R. K. Enzymes and coenzymes of the carbon monoxide dehydrogenase pathway for autotrophic CO2 fixation in Archaeoglobus lithotrophicus and the lack of carbon monoxide dehydrogenase in the heterotrophic A. profundus. Arch. Microbiol. 163, 112–118 (1995).

    CAS 
    Article 

    Google Scholar
     

  • Hartmann, J. F. et al. High spatiotemporal dynamics of methane production and emission in oxic surface water. Environ. Sci. Technol. 54, 1451–1463 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kamat, S. S., Williams, H. J., Dangott, L. J., Chakrabarti, M. & Raushel, F. M. The catalytic mechanism for aerobic formation of methane by bacteria. Nature 497, 132–136 (2013).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Metcalf, W. W. et al. Synthesis of methylphosphonic acid by marine microbes: a source for methane in the aerobic ocean. Science 337, 1104–1107 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zheng, Y. et al. A pathway for biological methane production using bacterial iron-only nitrogenase. Nat. Microbiol. 3, 281–286 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • North, J. A. et al. A nitrogenase-like enzyme system catalyzes methionine, ethylene, and methane biogenesis. Science 369, 1094–1098 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang, Q. et al. Aerobic bacterial methane synthesis. Proc. Natl Acad. Sci. USA 118, e2019229118 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Postgate, J. R. Methane as a minor product of pyruvate metabolism by sulphate-reducing and other bacteria. J. Gen. Microbiol. 57, 293–302 (1969).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Althoff, F. et al. Abiotic methanogenesis from organosulphur compounds under ambient conditions. Nat. Commun. 5, 4205 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Enami, S., Sakamoto, Y. & Colussi, A. J. Fenton chemistry at aqueous interfaces. Proc. Natl Acad. Sci. USA 111, 623–628 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mittler, R. ROS are good. Trends Plant Sci. 22, 11–19 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Braun, V. & Hantke, K. Recent insights into iron import by bacteria. Curr. Opin. Chem. Biol. 15, 328–334 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Dunbar, K. L., Scharf, D. H., Litomska, A. & Hertweck, C. Enzymatic carbon–sulfur bond formation in natural product biosynthesis. Chem. Rev. 117, 5521–5577 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wax, R. & Freese, E. Initiation of the germination of Bacillus subtilis spores by a combination of compounds in place of l-alanine. J. Bacteriol. 95, 433–438 (1968).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ewing, D. The effects of dimethylsulfoxide (DMSO) on the radiation sensitivity of bacterial spores. Radiat. Res. 90, 348–355 (1982).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Setlow, B., Melly, E. & Setlow, P. Properties of spores of Bacillus subtilis blocked at an intermediate stage in spore germination. J. Bacteriol. 183, 4894–4899 (2001).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Candeias, L. P., Stratford, M. R. L. & Wardman, P. Formation of hydroxyl radicals on reaction of hypochlorous acid with ferrocyanide, a model iron(II) complex. Free Radical Res. 20, 241–249 (2009).

    Article 

    Google Scholar
     

  • Bruskov, V. I., Masalimov, Z. K. & Chernikov, A. V. Heat-induced generation of reactive oxygen species in water. Dokl. Biochem. Biophys. 384, 181–184 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Foyer, C. H. & Noctor, G. Ascorbate and glutathione: the heart of the redox hub. Plant Physiol. 155, 2–18 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rush, J. D. & Koppenol, W. H. Reactions of Fe(II)–ATP and Fe(II)–citrate complexes with t-butyl hydroperoxide and cumyl hydroperoxide. FEBS Lett. 275, 114–116 (1990).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wongnate, T. et al. The radical mechanism of biological methane synthesis by methyl-coenzyme M reductase. Science 352, 953–958 (2016).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ross, M. O. & Rosenzweig, A. C. A tale of two methane monooxygenases. J. Biol. Inorg. Chem. 22, 307–319 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mols, M. & Abee, T. Primary and secondary oxidative stress in Bacillus. Environ. Microbiol. 13, 1387–1394 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wishkerman, A. et al. Enhanced formation of methane in plant cell cultures by inhibition of cytochrome c oxidase. Plant Cell Environ. 34, 457–464 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tuboly, E. et al. Methane biogenesis during sodium azide-induced chemical hypoxia in rats. Am. J. Physiol. Cell Physiol. 304, 207–214 (2013).

    Article 

    Google Scholar
     

  • Klintzsch, T. et al. Effects of temperature and light on methane production of widespread marine phytoplankton. J. Geophys. Res. Biogeosci. 125, e2020JG005793 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Polag, D., Leiß, O. & Keppler, F. Age dependent breath methane in the German population. Sci. Total Environ. 481, 582–587 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhang, X. et al. Methane limit LPS-induced NF-κB/MAPKs signal in macrophages and suppress immune response in mice by enhancing PI3K/AKT/GSK-3β-mediated IL-10 expression. Sci. Rep. 6, 293591 (2016).


    Google Scholar
     

  • Qaderi, M. M. & Reid, D. M. Methane emissions from six crop species exposed to three components of global climate change: temperature, ultraviolet-B radiation and water stress. Physiol. Plant 137, 139–147 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Brüggemann, N. et al. Nonmicrobial aerobic methane emission from poplar shoot cultures under low-light conditions. New Phytol. 182, 912–918 (2009).

    PubMed 
    Article 

    Google Scholar
     

  • Harwood, C. R. & Cutting, S. M. (eds) Molecular Biological Methods for Bacillus. Vol. 1 (John Wiley & Sons, 1990).

  • Mutlu, A. et al. Phenotypic memory in Bacillus subtilis links dormancy entry and exit by a spore quantity–quality tradeoff. Nat. Commun. 9, 69 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Source link