May 24, 2024

MicroRNA sequence codes for small extracellular vesicle release and cellular retention – Nature

  • 1.

    Thomou, T. et al. Adipose-derived circulating miRNAs regulate gene expression in other tissues. Nature 542, 450–455 (2017).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • 2.

    Valadi, H. et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat.Cell Biol. 9, 654–659 (2007).

    CAS 
    Article 

    Google Scholar
     

  • 3.

    Skog, J. et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat.Cell Biol. 10, 1470–1476 (2008).

    CAS 
    Article 

    Google Scholar
     

  • 4.

    Mori, M. A., Ludwig, R. G., Garcia-Martin, R., Brandao, B. B. & Kahn, C. R. Extracellular miRNAs: from biomarkers to mediators of physiology and disease. Cell Metab. 30, 656–673 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 5.

    Tosar, J. P. et al. Assessment of small RNA sorting into different extracellular fractions revealed by high-throughput sequencing of breast cell lines. Nucleic Acids Res. 43, 5601–5616 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 6.

    Arroyo, J. D. et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc. Natl Acad. Sci. USA 108, 5003–5008 (2011).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • 7.

    Hunter, M. P. et al. Detection of microRNA expression in human peripheral blood microvesicles. PLoS ONE 3, e3694 (2008).

    Article 
    ADS 

    Google Scholar
     

  • 8.

    Crewe, C. et al. An endothelial-to-adipocyte extracellular vesicle axis governed by metabolic state. Cell 175, 695–708 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 9.

    Zomer, A. et al. In vivo imaging reveals extracellular vesicle-mediated phenocopying of metastatic behavior. Cell 161, 1046–1057 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 10.

    Abels, E. R. et al. Glioblastoma-associated microglia reprogramming is mediated by functional transfer of extracellular miR-21. Cell Rep. 28, 3105–3119 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 11.

    Kosaka, N. et al. Secretory mechanisms and intercellular transfer of microRNAs in living cells. J. Biol. Chem. 285, 17442–17452 (2010).

    CAS 
    Article 

    Google Scholar
     

  • 12.

    Shurtleff, M. J., Temoche-Diaz, M. M., Karfilis, K. V., Ri, S. & Schekman, R. Y-box protein 1 is required to sort microRNAs into exosomes in cells and in a cell-free reaction. eLife 5, e19276 (2016).

  • 13.

    Wei, Z. et al. Coding and noncoding landscape of extracellular RNA released by human glioma stem cells. Nat. Commun. 8, 1145 (2017).

    Article 
    ADS 

    Google Scholar
     

  • 14.

    Cha, D. J. et al. KRAS-dependent sorting of miRNA to exosomes. eLife 4, e07197 (2015).

    Article 

    Google Scholar
     

  • 15.

    Jeppesen, D. K. et al. Reassessment of exosome composition. Cell 177, 428–445 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 16.

    Santangelo, L. et al. The RNA-binding protein SYNCRIP is a component of the hepatocyte exosomal machinery controlling microRNA sorting. Cell Rep. 17, 799–808 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 17.

    Temoche-Diaz, M. M. et al. Distinct mechanisms of microRNA sorting into cancer cell-derived extracellular vesicle subtypes. eLife 8, e47544 (2019).

  • 18.

    Villarroya-Beltri, C. et al. Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nat. Commun. 4, 2980 (2013).

    Article 
    ADS 

    Google Scholar
     

  • 19.

    Thery, C. et al. Minimal Information for Studies of Extracellular Vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles 7, 1535750 (2018).

    Article 

    Google Scholar
     

  • 20.

    Lagos-Quintana, M. et al. Identification of tissue-specific microRNAs from mouse. Curr. Biol. 12, 735–739 (2002).

    CAS 
    Article 

    Google Scholar
     

  • 21.

    Jopling, C. Liver-specific microRNA-122: biogenesis and function. RNA Biol. 9, 137–142 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 22.

    Horaka, M. N. J. & Bienertova-Vaskuac, J. Muscle-specific microRNAs in skeletal muscle development. Dev. Biol. 410, 1–13 (2016).

    Article 

    Google Scholar
     

  • 23.

    Gao, T., Shu, J. & Cui, J. A systematic approach to RNA-associated motif discovery. BMC Genomics 19, 146 (2018).

    Article 

    Google Scholar
     

  • 24.

    Bartel, D. P. Metazoan microRNAs. Cell 173, 20–51 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 25.

    Statello, L. et al. Identification of RNA-binding proteins in exosomes capable of interacting with different types of RNA: RBP-facilitated transport of RNAs into exosomes. PLoS ONE 13, e0195969 (2018).

    Article 

    Google Scholar
     

  • 26.

    Shi, M. et al. ALYREF mainly binds to the 5′ and the 3′ regions of the mRNA in vivo. Nucleic Acids Res. 45, 9640–9653 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 27.

    Zhang, T. et al. FUS regulates activity of microRNA-mediated gene silencing. Mol. Cell 69, 787–801 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 28.

    Bae, Y. et al. miRNA-34c regulates Notch signaling during bone development. Hum. Mol. Genet. 21, 2991–3000 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 29.

    Hu, S. et al. MicroRNA-34c downregulation ameliorates amyloid-β-induced synaptic failure and memory deficits by targeting VAMP2. J. Alzheimers Dis. 48, 673–686 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 30.

    Ngalame, N. N., Tokar, E. J., Person, R. J., Xu, Y. & Waalkes, M. P. Aberrant microRNA expression likely controls RAS oncogene activation during malignant transformation of human prostate epithelial and stem cells by arsenic. Toxicol. Sci. 138, 268–277 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 31.

    Paraskevopoulou, M. D. et al. DIANA-LncBase: experimentally verified and computationally predicted microRNA targets on long non-coding RNAs. Nucleic Acids Res. 41, D239–D245 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 32.

    Chevillet, J. R. et al. Quantitative and stoichiometric analysis of the microRNA content of exosomes. Proc. Natl Acad. Sci. USA 111, 14888–14893 (2014).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • 33.

    Fasshauer, M. et al. Essential role of insulin receptor substrate-2 in insulin stimulation of Glut4 translocation and glucose uptake in brown adipocytes. J. Biol. Chem. 275, 25494–25501 (2000).

    CAS 
    Article 

    Google Scholar
     

  • 34.

    Thery, C., Amigorena, S., Raposo, G. & Clayton, A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr. Protoc. Cell Biol. Chapter 3, Unit 3.22, (2006).

    PubMed 

    Google Scholar
     

  • 35.

    Peltier, H. J. & Latham, G. J. Normalization of microRNA expression levels in quantitative RT–PCR assays: identification of suitable reference RNA targets in normal and cancerous human solid tissues. RNA 14, 844–852 (2008).

    CAS 
    Article 

    Google Scholar
     

  • 36.

    Collins, B. C. et al. Multi-laboratory assessment of reproducibility, qualitative and quantitative performance of SWATH-mass spectrometry. Nat. Commun. 8, 291 (2017).

    Article 
    ADS 

    Google Scholar
     

  • 37.

    Schilling, B., Gibson, B. W. & Hunter, C. L. Generation of high-quality SWATH(R) acquisition data for label-free quantitative proteomics studies using tripleTOF(R) mass spectrometers. Methods Mol. Biol. 1550, 223–233 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 38.

    Ritchie, M. E. et al. Empirical array quality weights in the analysis of microarray data. BMC Bioinf. 7, 261 (2006).

    Article 

    Google Scholar
     

  • 39.

    Burger, T. Gentle introduction to the statistical foundations of false discovery rate in quantitative proteomics. J. Proteome Res. 17, 12–22 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 40.

    Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).

    CAS 
    Article 

    Google Scholar
     

  • 41.

    Kullback, S. & Leibler, R. A., On information and sufficiency, Ann. Math. Stat. 22, 79–86 (1951).

    MathSciNet 
    Article 

    Google Scholar
     

  • 42.

    Consortium, E.-T. et al. EV-TRACK: transparent reporting and centralizing knowledge in extracellular vesicle research. Nat. Methods 14, 228–232 (2017).

    Article 

    Google Scholar
     

  • Source link