May 5, 2024
Mixed-dimensional moiré systems of twisted graphitic thin films – Nature

Mixed-dimensional moiré systems of twisted graphitic thin films – Nature

  • Balents, L., Dean, C. R., Efetov, D. K. & Young, A. F. Superconductivity and strong correlations in moiré flat bands. Nat. Phys. 16, 725–733 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Andrei, E. Y. & MacDonald, A. H. Graphene bilayers with a twist. Nat. Mater. 19, 1265–1275 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bistritzer, R. & MacDonald, A. H. Moiré bands in twisted double-layer graphene. Proc. Natl Acad. Sci. USA 108, 12233–12237 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suárez Morell, E., Correa, J. D., Vargas, P., Pacheco, M. & Barticevic, Z. Flat bands in slightly twisted bilayer graphene: tight-binding calculations. Phys. Rev. B. 82, 121407(R) (2010).

    Article 
    ADS 

    Google Scholar
     

  • Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu, X. et al. Superconductors, orbital magnets, and correlated states in magic angle bilayer graphene. Nature 574, 653–657 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yankowitz, M. et al. Tuning superconductivity in twisted bilayer graphene. Science 363, 1059–1064 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Park, J. M., Cao, Y., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Tunable strongly coupled superconductivity in magic-angle twisted trilayer graphene. Nature 590, 249–255 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hao, Z. et al. Electric field tunable superconductivity in alternating-twist magic-angle trilayer graphene. Science 371, 1133–1138 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Park, J. M. et al. Robust superconductivity in magic-angle multilayer graphene family. Nat. Mater. 21, 877–883 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Burg, G. W. et al. Emergence of correlations in alternating twist quadrilayer graphene. Nat. Mater. 21, 884–889 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Y. et al. Promotion of superconductivity in magic-angle graphene multilayers. Science 377, 1538–1543 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, S. et al. Electrically tunable correlated and topological states in twisted monolayer–bilayer graphene. Nat. Phys. 17, 374–380 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Polshyn, H. et al. Electrical switching of magnetic order in an orbital chern insulator. Nature 588, 66–70 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Shi, Y. et al. Tunable van Hove singularities and correlated states in twisted monolayer-bilayer graphene. Nat. Phys. 17, 619–626 (2021).

    Article 

    Google Scholar
     

  • He, M. et al. Competing correlated states and abundant orbital magnetism in twisted monolayer-bilayer graphene. Nat. Commun. 12, 4727 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shen, C. et al. Correlated states in twisted double bilayer graphene. Nat. Phys. 16, 520–525 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Liu, X. et al. Tunable spin-polarized correlated states in twisted double bilayer graphene. Nature 583, 221–225 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao, Y. et al. Tunable correlated states and spin-polarized phases in twisted bilayer–bilayer graphene. Nature 583, 215–220 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Burg, G. W. et al. Correlated insulating states in twisted double bilayer graphene. Phys. Rev. Lett. 123, 197702 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • He, M. et al. Symmetry breaking in twisted double bilayer graphene. Nat. Phys. 17, 26–30 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Cea, T., Walet, N. R. & Guinea, F. Twists and the electronic structure of graphitic materials. Nano Lett. 19, 8683–8689 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, G. et al. Observation of van Hove singularities in twisted graphene layers. Nat. Phys. 6, 109–113 (2010).

    Article 

    Google Scholar
     

  • Soule, D. E. Magnetic field dependence of the hall effect and magnetoresistance in graphite single crystals. Phys. Rev. 112, 698–707 (1958).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yin, J. et al. Dimensional reduction, quantum Hall effect and layer parity in graphite films. Nat. Phys. 15, 437–442 (2019).

    Article 
    CAS 

    Google Scholar
     

  • McClure, J. W. & Spry, W. J. Linear magnetoresistance in the quantum limit in graphite. Phys. Rev. 165, 809–815 (1968).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hofstadter, D. R. Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields. Phys. Rev. B 14, 2239 (1976).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Brown, E. Bloch electrons in a uniform magnetic field. Phys. Rev. 133, A1038–A1044 (1964).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Hunt, B. et al. Massive Dirac fermions and Hofstadter butterfly in a van der Waals heterostructure. Science 340, 1427–1430 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Dean, C. R. et al. Hofstadter’s butterfly and the fractal quantum Hall effect in moire superlattices. Nature 497, 598–602 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ponomarenko, L. A. et al. Cloning of Dirac fermions in graphene superlattices. Nature 497, 594–597 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kumar, R. K. et al. High-temperature quantum oscillations caused by recurring Bloch states in graphene superlattices. Science 357, 181–184 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Halbertal, D. et al. Multilayered atomic relaxation in van der Waals heterostructures. Phys. Rev. X 13, 011026 (2023).

    CAS 

    Google Scholar
     

  • Zhou, H., Xie, T., Taniguchi, T., Watanabe, K. & Young, A. F. Superconductivity in rhombohedral trilayer graphene. Nature 598, 434–438 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, H. et al. Isospin magnetism and spin-polarized superconductivity in Bernal bilayer graphene. Science 375, 774–778 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, G. et al. Evidence of a gate-tunable mott insulator in a trilayer graphene moiré superlattice. Nat. Phys. 15, 237–241 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Saito, Y., Ge, J., Watanabe, K., Taniguchi, T. & Young, A. F. Independent superconductors and correlated insulators in twisted bilayer graphene. Nat. Phys. 16, 926–930 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • McGilly, L. J. et al. Visualization of moiré superlattices. Nat. Nanotechnol. 15, 580–584 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • McClure, J. W. Analysis of multicarrier galvanomagnetic data for graphite. Phys. Rev. 112, 715–721 (1958).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Charlier, J.-C., Gonze, X. & Michenaud, J.-P. First-principles study of the electronic properties of graphite. Phys. Rev. B 43, 4579 (1991).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Koshino, M. & Nam, N. N. T. Effective continuum model for relaxed twisted bilayer graphene and moiré electron-phonon interaction. Phys. Rev. B 101, 195425 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Mañes, J. L., Guinea, F. & Vozmediano, M. A. H. Existence and topological stability of fermi points in multilayered graphene. Phys. Rev. B 75, 155424 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Koshino, M. Interlayer screening effect in graphene multilayers with aba and abc stacking. Phys. Rev. B 81, 125304 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Source link