May 3, 2024
Modular strategy for development of the hierarchical visual network in mice – Nature

Modular strategy for development of the hierarchical visual network in mice – Nature

  • Zeki, S. & Shipp, S. The functional logic of cortical connections. Nature 335, 311–317 (1988).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Felleman, D. J. & Van Essen, D. C. Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1, 1–47 (1991).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kaas, J. H. & Hackett, T. A. Subdivisions of auditory cortex and processing streams in primates. Proc. Natl Acad. Sci. USA 97, 11793–11799 (2000).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kaas, J. H. & Lyon, D. C. Pulvinar contributions to the dorsal and ventral streams of visual processing in primates. Brain Res. Rev. 55, 285–296 (2007).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wang, Q., Sporns, O. & Burkhalter, A. Network analysis of corticocortical connections reveals ventral and dorsal processing streams in mouse visual cortex. J. Neurosci. 32, 4386–4399 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Park, H. & Friston, K. Structural and functional brain networks: from connections to cognition. Science 342, 1238411 (2013).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Markov, N. T. et al. Anatomy of hierarchy: feedforward and feedback pathways in macaque visual cortex. J. Comp. Neurol. 522, 225–259 (2014).

    PubMed 
    Article 

    Google Scholar
     

  • Bennett, C. et al. Higher-order thalamic circuits channel parallel streams of visual information in mice. Neuron 102, 477–492 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • López-Bendito, G. & Molnár, Z. Thalamocortical development: how are we going to get there? Nat. Rev. Neurosci. 4, 276–289 (2003).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Guillery, R. W. Is postnatal neocortical maturation hierarchical? Trends Neurosci. 28, 512–517 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Luo, L. & O’Leary, D. D. M. Axon retraction and degeneration in development and disease. Annu. Rev. Neurosci. 28, 127–156 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bourne, J. A. & Morrone, M. C. Plasticity of visual pathways and function in the developing brain: is the pulvinar a crucial player? Front. Syst. Neurosci. 11, 3 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chomiak, T. & Hu, B. Mechanisms of hierarchical cortical maturation. Front. Cell. Neurosci. 11, 272 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Godement, P., Salaün, J. & Imbert, M. Prenatal and postnatal development of retinogeniculate and retinocollicular projections in the mouse. J. Comp. Neurol. 230, 552–575 (1984).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Auladell, C., Pérez-Sust, P., Supèr, H. & Soriano, E. The early development of thalamocortical and corticothalamic projections in the mouse. Anat. Embryol. 201, 169–179 (2000).

    CAS 
    Article 

    Google Scholar
     

  • Dong, H., Wang, Q., Valkova, K., Gonchar, Y. & Burkhalter, A. Experience-dependent development of feedforward and feedback circuits between lower and higher areas of mouse visual cortex. Vis. Res. 44, 3389–3400 (2004).

    PubMed 
    Article 

    Google Scholar
     

  • Berezovskii, V. K., Nassi, J. J. & Born, R. T. Segregation of feedforward and feedback projections in mouse visual cortex. J. Comp. Neurol. 519, 3672–3683 (2011).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Shipp, S. The functional logic of cortico–pulvinar connections. Philos. Trans. R. Soc. B 358, 1605–1624 (2003).

    CAS 
    Article 

    Google Scholar
     

  • Sherman, S. M. Thalamus plays a central role in ongoing cortical functioning. Nat. Neurosci. 19, 533–541 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhou, N., Maire, P. S., Masterson, S. P. & Bickford, M. E. The mouse pulvinar nucleus: organization of the tectorecipient zones. Vis. Neurosci. 34, E011 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rokszin, A. et al. Visual pathways serving motion detection in the mammalian brain. Sensors 10, 3218–3242 (2010).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Murakami, T., Matsui, T. & Ohki, K. Functional segregation and development of mouse higher visual areas. J. Neurosci. 37, 9424 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Feldheim, D. A. & O’Leary, D. D. M. Visual map development: bidirectional signaling, bifunctional guidance molecules, and competition. Cold Spring Harb. Perspect. Biol. 2, a001768 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Huberman, A. D., Feller, M. B. & Chapman, B. Mechanisms underlying development of visual maps and receptive fields. Annu. Rev. Neurosci. 31, 479–509 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Erzurumlu, R. S. & Gaspar, P. Development and critical period plasticity of the barrel cortex. Eur. J. Neurosci. 35, 1540–1553 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Arcaro, M. J. & Livingstone, M. S. A hierarchical, retinotopic proto-organization of the primate visual system at birth. eLife 6, e26196 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Homman-Ludiye, J. & Bourne, J. A. Mapping arealisation of the visual cortex of non-primate species: lessons for development and evolution. Front. Neural Circuits 8, 79 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Warner, C. E., Kwan, W. C. & Bourne, J. A. The early maturation of visual cortical area MT is dependent on input from the retinorecipient medial portion of the inferior pulvinar. J. Neurosci. 32, 17073–17085 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chou, S. et al. Geniculocortical input drives genetic distinctions between primary and higher-order visual areas. Science 340, 1239–1242 (2013).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Vue, T. Y. et al. Thalamic control of neocortical area formation in mice. J. Neurosci. 33, 8442–8453 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Moreno-Juan, V. et al. Prenatal thalamic waves regulate cortical area size prior to sensory processing. Nat. Commun. 8, 14172 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Antón-Bolaños, N. et al. Prenatal activity from thalamic neurons governs the emergence of functional cortical maps in mice. Science 364, 987–990 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Batardière, A. et al. Early specification of the hierarchical organization of visual cortical areas in the macaque monkey. Cereb. Cortex 12, 453–465 (2002).

    PubMed 
    Article 

    Google Scholar
     

  • Baldwin, M. K. L., Kaskan, P. M., Zhang, B., Chino, Y. M. & Kaas, J. H. Cortical and subcortical connections of V1 and V2 in early postnatal macaque monkeys. J. Comp. Neurol. 520, 544–569 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ackman, J. B., Burbridge, T. & Crair, M. C. Retinal waves coordinate patterned activity throughout the developing visual system. Nature 490, 219–225 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Matsui, T., Murakami, T. & Ohki, K. Transient neuronal coactivations embedded in globally propagating waves underlie resting-state functional connectivity. Proc. Natl Acad. Sci. USA 113, 6556–6561 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Yamada, J. et al. Ephrin-As and neural activity are required for eye-specific patterning during retinogeniculate mapping. Nat. Neurosci. 8, 1022–1027 (2005).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Monavarfeshani, A., Sabbagh, U. & Fox, M. A. Not a one-trick pony: diverse connectivity and functions of the rodent lateral geniculate complex. Vis. Neurosci. 34, E012 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Laing, R. J., Lasiene, J. & Olavarria, J. F. Topography of striate–extrastriate connections in neonatally enucleated rats. BioMed Res. Int. 2013, 592426–592429 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cang, J. et al. Development of precise maps in visual cortex requires patterned spontaneous activity in the retina. Neuron 48, 797–809 (2005).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Dye, C. A., Abbott, C. W. & Huffman, K. J. Bilateral enucleation alters gene expression and intraneocortical connections in the mouse. Neural Dev. 7, 5 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Frangeul, L. et al. A cross-modal genetic framework for the development and plasticity of sensory pathways. Nature 538, 96–98 (2016).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Smith, I. T., Townsend, L. B., Huh, R., Zhu, H. & Smith, S. L. Stream-dependent development of higher visual cortical areas. Nat. Neurosci. 20, 200–208 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Tsukano, H. et al. Reconsidering tonotopic maps in the auditory cortex and lemniscal auditory thalamus in mice. Front. Neural Circuits 11, 14 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vanni, M. P., Chan, A. W., Balbi, M., Silasi, G. & Murphy, T. H. Mesoscale mapping of mouse cortex reveals frequency-dependent cycling between distinct macroscale functional modules. J. Neurosci. 37, 7513–7533 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Adibi, M. Whisker-mediated touch system in rodents: from neuron to behavior. Front. Syst. Neurosci. 13, 40 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Phillips, J. W. et al. A repeated molecular architecture across thalamic pathways. Nat. Neurosci. 22, 1925–1935 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Pouchelon, G. et al. Modality‐specific thalamocortical inputs instruct the identity of postsynaptic L4 neurons. Nature 511, 471–474 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gorski, J. A. et al. Cortical excitatory neurons and glia, but not GABAergic neurons, are produced in the Emx1-expressing lineage. J. Neurosci. 22, 6309–6314 (2002).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Taniguchi, H. et al. A resource of Cre driver lines for genetic targeting of GABAergic neurons in cerebral cortex. Neuron 71, 995–1013 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zariwala, H. A. et al. A Cre-dependent GCaMP3 reporter mouse for neuronal imaging in vivo. J. Neurosci. 32, 3131–3141 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Madisen, L. et al. Transgenic mice for intersectional targeting of neural sensors and effectors with high specificity and performance. Neuron 85, 942–958 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Peirce, J. W. PsychoPy—psychophysics software in Python. J. Neurosci. Methods 162, 8–13 (2007).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Vincent, J. L. et al. Intrinsic functional architecture in the anaesthetized monkey brain. Nature 447, 83–86 (2007).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Fratzl, A. et al. Flexible inhibitory control of visually evoked defensive behavior by the ventral lateral geniculate nucleus. Neuron 109, 3810–3822 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Source link