May 7, 2024
Molecular interplay of an assembly machinery for nitrous oxide reductase – Nature

Molecular interplay of an assembly machinery for nitrous oxide reductase – Nature

  • Thompson, R. L. et al. Acceleration of global N2O emissions seen from two decades of atmospheric inversion. Nat. Clim. Chang. 9, 993–997 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Ravishankara, A. R., Daniel, J. S. & Portmann, R. W. Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science 326, 123–125 (2009).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tian, H. Q. et al. A comprehensive quantification of global nitrous oxide sources and sinks. Nature 586, 248–256 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Honisch, U. & Zumft, W. G. Operon structure and regulation of the nos gene region of Pseudomonas stutzeri, encoding an ABC-type ATPase for maturation of nitrous oxide reductase. J. Bacteriol. 185, 1895–1902 (2003).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zumft, W. G. & Kroneck, P. M. H. Respiratory transformation of nitrous oxide (N2O) to dinitrogen by Bacteria and Archaea. Adv. Microb. Physiol. 52, 107–225 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Pomowski, A., Zumft, W. G., Kroneck, P. M. H. & Einsle, O. N2O binding at a [4Cu:2S] copper–sulphur cluster in nitrous oxide reductase. Nature 477, 234–237 (2011).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Thomson, A. J., Giannopoulos, G., Pretty, J., Baggs, E. M. & Richardson, D. J. Biological sources and sinks of nitrous oxide and strategies to mitigate emissions. Phil. Trans. R. Soc. B 367, 1157–1168 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Butterbach-Bahl, K., Baggs, E. M., Dannenmann, M., Kiese, R. & Zechmeister-Boltenstern, S. Nitrous oxide emissions from soils: how well do we understand the processes and their controls? Phil. Trans. R. Soc. B 368, 20130122 (2013).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Jansson, J. K. & Hofmockel, K. S. Soil microbiomes and climate change. Nat. Rev. Microbiol. 18, 35–46 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Stein, L. Y. The long-term relationship between microbial metabolism and greenhouse gases. Trends Microbiol. 28, 500–511 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Torres, M. J. et al. Nitrous oxide metabolism in nitrate-reducing bacteria: physiology and regulatory mechanisms. Adv. Microb. Physiol. 68, 353–432 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Pauleta, S. R., Carepo, M. S. P. & Moura, I. Source and reduction of nitrous oxide. Coord. Chem. Rev. 387, 436–449 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Solomon, E. I. et al. Copper active sites in biology. Chem. Rev. 114, 3659–3853 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Dupont, C. L., Grass, G. & Rensing, C. Copper toxicity and the origin of bacterial resistance—new insights and applications. Metallomics 3, 1109–1118 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Schneider, L. K. & Einsle, O. Role of calcium in secondary structure stabilization during maturation of nitrous oxide reductase. Biochemistry 55, 1433–1440 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Locher, K. P. Mechanistic diversity in ATP-binding cassette (ABC) transporters. Nat. Struct. Mol. Biol. 23, 487–493 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Higgins, C. F. ABC transporters: from microorganisms to man. Annu. Rev. Cell Biol. 8, 67–113 (1992).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Li, Y. Y., Orlando, B. J. & Liao, M. F. Structural basis of lipopolysaccharide extraction by the LptB2FGC complex. Nature 567, 486–490 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Fitzpatrick, A. W. P. et al. Structure of the MacAB–TolC ABC-type tripartite multidrug efflux pump. Nat. Microbiol. 2, 17070 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zumft, W. G., Viebrock-Sambale, A. & Braun, C. Nitrous oxide reductase from denitrifying Pseudomonas stutzeri—genes for copper-processing and properties of the deduced products, including a new member of the family of ATP/GTP-binding proteins. Eur. J. Biochem. 192, 591–599 (1990).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhang, L., Wüst, A., Prasser, B., Müller, C. & Einsle, O. Functional assembly of nitrous oxide reductase provides insights into copper site maturation. Proc. Natl Acad. Sci. USA 116, 12822–12827 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zumft, W. G. Biogenesis of the bacterial respiratory CuA, Cu–S enzyme nitrous oxide reductase. J. Mol. Microbiol. Biotechnol. 10, 154–166 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • Wunsch, P. & Zumft, W. G. Functional domains of NosR, a novel transmembrane iron-sulfur flavoprotein necessary for nitrous oxide respiration. J. Bacteriol. 187, 1992–2001 (2005).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bennett, S. P. et al. NosL is a dedicated copper chaperone for assembly of the CuZ center of nitrous oxide reductase. Chem. Sci. 10, 4985–4993 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • McGuirl, M. A., Bollinger, J. A., Cosper, N., Scott, R. A. & Dooley, D. M. Expression, purification, and characterization of NosL, a novel Cu(II) protein of the nitrous oxide reductase (nos) gene cluster. J. Biol. Inorg. Chem. 6, 189–195 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Okuda, S. & Tokuda, H. Lipoprotein sorting in bacteria. Annu. Rev. Microbiol. 65, 239–259 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ciccarelli, F. D., Copley, R. R., Doerks, T., Russell, R. B. & Bork, P. CASH—a β-helix domain widespread among carbohydrate-binding proteins. Trends Biochem. Sci. 27, 59–62 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lee, J. Y. et al. Crystal structure of the human sterol transporter ABCG5/ABCG8. Nature 533, 561–564 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Thomas, C. & Tampé, R. Multifaceted structures and mechanisms of ABC transport systems in health and disease. Curr. Opin. Struct. Biol. 51, 116–128 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rees, D. C., Johnson, E. & Lewinson, O. ABC transporters: the power to change. Nat. Rev. Mol. Cell Biol. 10, 218–227 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bi, Y. C., Mann, E., Whitfield, C. & Zimmer, J. Architecture of a channel-forming O-antigen polysaccharide ABC transporter. Nature 553, 361–365 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Qian, H. W. et al. Structure of the human lipid exporter ABCA1. Cell 169, 1228–1234 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Diederichs, K. et al. Crystal structure of MalK, the ATPase subunit of the trehalose/maltose ABC transporter of the archaeon Thermococcus litoralis. EMBO J. 19, 5951–5961 (2000).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Nguyen, P. T., Lai, J. Y., Lee, A. T., Kaiser, J. T. & Rees, D. C. Noncanonical role for the binding protein in substrate uptake by the MetNI methionine ATP binding cassette (ABC) transporter. Proc. Natl Acad. Sci. USA 115, E10596–E10604 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oldham, M. L., Khare, D., Quiocho, F. A., Davidson, A. L. & Chen, J. Crystal structure of a catalytic intermediate of the maltose transporter. Nature 450, 515–521 (2007).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Manolaridis, I. et al. Cryo-EM structures of a human ABCG2 mutant trapped in ATP-bound and substrate-bound states. Nature 563, 426–430 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Banci, L., Bertini, I., Del Conte, R., Markey, J. & Ruiz-Duenas, F. J. Copper trafficking: the solution structure of Bacillus subtilis CopZ. Biochemistry 40, 15660–15668 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Culotta, V. C. et al. The copper chaperone for superoxide dismutase. J. Biol. Chem. 272, 23469–23472 (1997).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Prasser, B., Schöner, L., Zhang, L. & Einsle, O. The copper chaperone NosL forms a heterometal site for Cu delivery to nitrous oxide reductase. Angew. Chem. Int. Edn Engl. 60, 18810–18814 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Ho, S. N., Hunt, H. D., Horton, R. M., Pullen, J. K. & Pease, L. R. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77, 51–59 (1989).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ritchie, T. K. et al. Reconstitution of membrane proteins in phospholipid bilayer nanodiscs. Methods Enzymol. 464, 211–231 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chifflet, S., Torriglia, A., Chiesa, R. & Tolosa, S. A method for the determination of inorganic phosphate in the presence of labile organic phosphate and high concentrations of protein—application to lens ATPases. Anal. Biochem. 168, 1–4 (1988).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005).

    PubMed 
    Article 

    Google Scholar
     

  • Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Scheres, S. H. W. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife 7, e42166 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhang, K. Gctf: real-time CTF determination and correction. J. Struct. Biol. 193, 1–12 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rohou, A. & Grigorieff, N. CTFFIND4: fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zivanov, J., Nakane, T. & Scheres, S. H. W. A Bayesian approach to beam-induced motion correction in cryo-EM single-particle analysis. IUCrJ 6, 5–17 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Scheres, S. H. W. Processing of structurally heterogeneous cryo-EM data in RELION. Methods Enzymol. 579, 125–157 (2016).

  • Bai, X. C., Rajendra, E., Yang, G. H., Shi, Y. G. & Scheres, S. H. W. Sampling the conformational space of the catalytic subunit of human γ-secretase. eLife 4, e11182 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Williams, C. J. et al. MolProbity: more and better reference data for improved all-atom structure validation. Protein Sci. 27, 293–315 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Goddard, T. D., Huang, C. C. & Ferrin, T. E. Visualizing density maps with UCSF Chimera. J. Struct. Biol. 157, 281–287 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhang, L., Trncik, C., Andrade, S. L. & Einsle, O. The flavinyl transferase ApbE of Pseudomonas stutzeri matures the NosR protein required for nitrous oxide reduction. Biochim. Biophys. Acta 1858, 95–102 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Dell’Acqua, S. et al. Electron transfer complex between nitrous oxide reductase and cytochrome c552 from Pseudomonas nautica: kinetic, nuclear magnetic resonance, and docking studies. Biochemistry 47, 10852–10862 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Source link