May 23, 2024
Molecularly defined circuits for cardiovascular and cardiopulmonary control – Nature

Molecularly defined circuits for cardiovascular and cardiopulmonary control – Nature

  • Langley, J. N. The Autonomic Nervous System (W. Heffer & Sons, 1921).

  • Ernsberger, U. & Rohrer, H. Sympathetic tales: subdivisons of the autonomic nervous system and the impact of developmental studies. Neural Dev. 13, 20 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Tao, J. et al. Highly selective brain-to-gut communication via genetically defined vagus neurons. Neuron 109, 2106–2115.e4 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Palma, J. A. & Benarroch, E. E. Neural control of the heart: recent concepts and clinical correlations. Neurology 83, 261–271 (2014).

    PubMed 
    Article 

    Google Scholar
     

  • Appel, M. L., Berger, R. D., Saul, J. P., Smith, J. M. & Cohen, R. J. Beat to beat variability in cardiovascular variables: noise or music? J. Am. Coll. Cardiol. 14, 1139–1148 (1989).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gourine, A. V., Machhada, A., Trapp, S. & Spyer, K. M. Cardiac vagal preganglionic neurones: an update. Auton. Neurosci. 199, 24–28 (2016).

    PubMed 
    Article 

    Google Scholar
     

  • La Rovere, M. T., Bigger, J. T. Jr., Marcus, F. I., Mortara, A. & Schwartz, P. J. Baroreflex sensitivity and heart-rate variability in prediction of total cardiac mortality after myocardial infarction. Lancet 351, 478–484 (1998).

    PubMed 
    Article 

    Google Scholar
     

  • Mortara, A. et al. Arterial baroreflex modulation of heart rate in chronic heart failure: clinical and hemodynamic correlates and prognostic implications. Circulation 96, 3450–3458 (1997).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jouven, X. et al. Heart-rate profile during exercise as a predictor of sudden death. N. Engl. J. Med. 352, 1951–1958 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Panneton, W. M., Anch, A. M., Panneton, W. M. & Gan, Q. Parasympathetic preganglionic cardiac motoneurons labeled after voluntary diving. Front. Physiol. 5, 8 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Massari, V. J., Johnson, T. A., Llewellyn-Smith, I. J. & Gatti, P. J. Substance P nerve terminals synapse upon negative chronotropic vagal motoneurons. Brain Res. 660, 275–287 (1994).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bennett, J. A., Kidd, C., Latif, A. B. & McWilliam, P. N. A horseradish peroxidase study of vagal motoneurones with axons in cardiac and pulmonary branches of the cat and dog. Q. J. Exp. Physiol. 66, 145–154 (1981).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lee, B. H., Lynn, R. B., Lee, H. S., Miselis, R. R. & Altschuler, S. M. Calcitonin gene-related peptide in nucleus ambiguus motoneurons in rat: viscerotopic organization. J. Comp. Neurol. 320, 531–543 (1992).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Muller, D. et al. Dlk1 promotes a fast motor neuron biophysical signature required for peak force execution. Science 343, 1264–1266 (2014).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Lein, E. S. et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature 445, 168–176 (2007).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cordes, S. P. Molecular genetics of cranial nerve development in mouse. Nat. Rev. Neurosci. 2, 611–623 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rajendran, P. S. et al. Identification of peripheral neural circuits that regulate heart rate using optogenetic and viral vector strategies. Nat. Commun. 10, 1944 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Rajasethupathy, P. et al. Projections from neocortex mediate top-down control of memory retrieval. Nature 526, 653–659 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hamlin, R. L. & Smith, C. R. Effects of vagal stimulation on S-A and A-V nodes. Am. J. Physiol. 215, 560–568 (1968).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cheng, Z., Zhang, H., Yu, J., Wurster, R. D. & Gozal, D. Attenuation of baroreflex sensitivity after domoic acid lesion of the nucleus ambiguus of rats. J. Appl. Physiol. 96, 1137–1145 (2004).

    PubMed 
    Article 

    Google Scholar
     

  • Kaufmann, H., Norcliffe-Kaufmann, L. & Palma, J. A. Baroreflex dysfunction. N. Engl. J. Med. 382, 163–178 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wehrwein, E. A. & Joyner, M. J. Regulation of blood pressure by the arterial baroreflex and autonomic nervous system. Handb. Clin. Neurol. 117, 89–102 (2013).

    PubMed 
    Article 

    Google Scholar
     

  • McAllen, R. M. & Spyer, K. M. The location of cardiac vagal preganglionic motoneurones in the medulla of the cat. J. Physiol. 258, 187–204 (1976).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Arrigo, M. & Huber, L. C. Eponyms in cardiopulmonary reflexes. Am. J. Cardiol. 112, 449–453 (2013).

    PubMed 
    Article 

    Google Scholar
     

  • Undem, B. J., Myers, A. C., Barthlow, H. & Weinreich, D. Vagal innervation of guinea pig bronchial smooth muscle. J. Appl. Physiol. 69, 1336–1346 (1990).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Haselton, J. R., Solomon, I. C., Motekaitis, A. M. & Kaufman, M. P. Bronchomotor vagal preganglionic cell bodies in the dog: an anatomic and functional study. J. Appl. Physiol. 73, 1122–1129 (1992).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Panneton, W. M. & Gan, Q. The mammalian diving response: inroads to its neural control. Front. Neurosci. 14, 524 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mukhtar, M. R. & Patrick, J. M. Bronchoconstriction: a component of the ‘diving response’ in man. Eur. J. Appl. Physiol. Occup. Physiol. 53, 155–158 (1984).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mazzone, S. B. & Canning, B. J. Evidence for differential reflex regulation of cholinergic and noncholinergic parasympathetic nerves innervating the airways. Am. J. Respir. Crit. Care Med. 165, 1076–1083 (2002).

    PubMed 
    Article 

    Google Scholar
     

  • Armelin, V. A. et al. The baroreflex in aquatic and amphibious teleosts: does terrestriality represent a significant driving force for the evolution of a more effective baroreflex in vertebrates? Comp. Biochem. Physiol. A 255, 110916 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Andersen, H. T. Physiological adaptations in diving vertebrates. Physiol. Rev. 46, 212–243 (1966).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Saternos, H. C. et al. Distribution and function of the muscarinic receptor subtypes in the cardiovascular system. Physiol. Genomics 50, 00062 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Lee, L. Y. & Pisarri, T. E. Afferent properties and reflex functions of bronchopulmonary C-fibers. Respir. Physiol. 125, 47–65 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sturani, C., Sturani, A. & Tosi, I. Parasympathetic activity assessed by diving reflex and by airway response to methacholine in bronchial asthma and rhinitis. Respiration 48, 321–328 (1985).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Paxinos, G., Franklin, K. B. J. The Mouse Brain in Stereotaxic Coordinates Second Edition (Academic Press, 2001).

  • Daigle, T. L. et al. A suite of transgenic driver and reporter mouse lines with enhanced brain-cell-type targeting and functionality. Cell 174, 465–480.e422 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mani, B. K. et al. The role of ghrelin-responsive mediobasal hypothalamic neurons in mediating feeding responses to fasting. Mol. Metab. 6, 882–896 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bieger, D. & Hopkins, D. A. Viscerotopic representation of the upper alimentary tract in the medulla oblongata in the rat: the nucleus ambiguus. J. Comp. Neurol. 262, 546–562 (1987).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yackle, K. et al. Breathing control center neurons that promote arousal in mice. Science 355, 1411–1415 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wang, X., Hayes, J. A., Picardo, M. C. & Del Negro, C. A. Automated cell-specific laser detection and ablation of neural circuits in neonatal brain tissue. J. Physiol. 591, 2393–2401 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • The Tabula Muris Consortium, Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. Nature 562, 367–372 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Jiang, H., Lei, R., Ding, S. W. & Zhu, S. Skewer: a fast and accurate adapter trimmer for next-generation sequencing paired-end reads. BMC Bioinformatics 15, 182 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Fregoso, S. P. & Hoover, D. B. Development of cardiac parasympathetic neurons, glial cells, and regional cholinergic innervation of the mouse heart. Neuroscience 221, 28–36 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • McGovern, T. K., Robichaud, A., Fereydoonzad, L., Schuessler, T. F. & Martin, J. G. Evaluation of respiratory system mechanics in mice using the forced oscillation technique. J. Vis. Exp. 75, e50172 (2013).


    Google Scholar
     

  • Tang, J. M. et al. Response gene to complement 32 maintains blood pressure homeostasis by regulating α-adrenergic receptor expression. Circ. Res. 123, 1080–1090 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kovacs, K. J. Measurement of immediate-early gene activation—c-fos and beyond. J. Neuroendocrinol. 20, 665–672 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • McAllen, R. M. & Spyer, K. M. Two types of vagal preganglionic motoneurones projecting to the heart and lungs. J. Physiol. 282, 353–364 (1978).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • McCulloch, P. F. Training rats to voluntarily dive underwater: investigations of the mammalian diving response. J. Vis. Exp. 93, e52093 (2014).


    Google Scholar
     

  • Hult, E. M., Bingaman, M. J. & Swoap, S. J. A robust diving response in the laboratory mouse. J. Comp. Physiol. B 189, 685–692 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Desai, T. J., Brownfield, D. G. & Krasnow, M. A. Alveolar progenitor and stem cells in lung development, renewal and cancer. Nature 507, 190–194 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bron, R., Yin, L., Russo, D. & Furness, J. B. Expression of the ghrelin receptor gene in neurons of the medulla oblongata of the rat. J. Comp. Neurol. 521, 2680–2702 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sherman, D., Worrell, J. W., Cui, Y. & Feldman, J. L. Optogenetic perturbation of preBotzinger complex inhibitory neurons modulates respiratory pattern. Nat. Neurosci. 18, 408–414 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Source link