May 27, 2024
Mosquito brains encode unique features of human odour to drive host seeking – Nature

Mosquito brains encode unique features of human odour to drive host seeking – Nature

  • Powell, J. R., Gloria-Soria, A. & Kotsakiozi, P. Recent history of Aedes aegypti: vector genomics and epidemiology records. BioScience 68, 854–860 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gouck, H. K. Host preferences of various strains of Aedes aegypti and A. simpsoni as determined by an olfactometer. Bull. World Health Organ. 47, 680–683 (1972).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McBride, C. S. et al. Evolution of mosquito preference for humans linked to an odorant receptor. Nature 515, 222–227 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Dormont, L., Bessière, J.-M. & Cohuet, A. Human skin volatiles: a review. J. Chem. Ecol. 39, 569–578 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jaleta, K. T., Hill, S. R., Birgersson, G., Tekie, H. & Ignell, R. Chicken volatiles repel host-seeking malaria mosquitoes. Malar. J. 15, 354 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Verhulst, N. O. et al. Do apes smell like humans? The role of skin bacteria and volatiles of primates in mosquito host selection. J. Exp. Biol. 221, jeb185959 (2018).

    PubMed 
    Article 

    Google Scholar
     

  • Syed, Z. & Leal, W. S. Acute olfactory response of Culex mosquitoes to a human- and bird-derived attractant. Proc. Natl Acad. Sci. USA 106, 18803–18808 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Malnic, B., Hirono, J., Sato, T. & Buck, L. B. Combinatorial receptor codes for odors. Cell 96, 713–723 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chong, E. et al. Manipulating synthetic optogenetic odors reveals the coding logic of olfactory perception. Science 368, eaba2357 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wang, J. W., Wong, A. M., Flores, J., Vosshall, L. B. & Axel, R. Two-photon calcium imaging reveals an odor-evoked map of activity in the fly brain. Cell 112, 271–282 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Joerges, J., Küttner, A., Galizia, C. G. & Menzel, R. Representations of odours and odour mixtures visualized in the honeybee brain. Nature 387, 285–288 (1997).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Ruta, V. et al. A dimorphic pheromone circuit in Drosophila from sensory input to descending output. Nature 468, 686–690 (2010).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Stensmyr, M. C. et al. A conserved dedicated olfactory circuit for detecting harmful microbes in Drosophila. Cell 151, 1345–1357 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Demir, E. et al. The pheromone darcin drives a circuit for innate and reinforced behaviours. Nature 578, 137–141 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Nakagawa, T., Sakurai, T., Nishioka, T. & Touhara, K. Insect sex-pheromone signals mediated by specific combinations of olfactory receptors. Science 307, 1638–1642 (2005).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Knudsen, J. T., Eriksson, R., Gershenzon, J. & Ståhl, B. Diversity and distribution of floral scent. Bot. Rev. 72, 1 (2006).

    Article 

    Google Scholar
     

  • Mansourian, S. et al. Fecal-derived phenol induces egg-laying aversion in Drosophila. Curr. Biol. 26, 2762–2769 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lin, D. Y., Shea, S. D. & Katz, L. C. Representation of natural stimuli in the rodent main olfactory bulb. Neuron 50, 937–949 (2006).

    CAS 
    Article 

    Google Scholar
     

  • Semmelhack, J. L. & Wang, J. W. Select Drosophila glomeruli mediate innate olfactory attraction and aversion. Nature 459, 218–223 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Riffell, J. A., Lei, H., Christensen, T. A. & Hildebrand, J. G. Characterization and coding of behaviorally significant odor mixtures. Curr. Biol. 19, 335–340 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Schubert, M., Hansson, B. S. & Sachse, S. The banana code-natural blend processing in the olfactory circuitry of Drosophila melanogaster. Front. Physiol. 5, 59 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rose, N. H. et al. Climate and urbanization drive mosquito preference for humans. Curr. Biol. 30, 3570–3579 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cardé, R. T. Multi-cue integration: how female mosquitoes locate a human host. Curr. Biol. 25, R793–R795 (2015).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Takken, W. & Verhulst, N. O. Host preferences of blood-feeding mosquitoes. Annu. Rev. Entomol. 58, 433–453 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Geier, M., Bosch, O. J. & Boeckh, J. Ammonia as an attractive component of host odour for the yellow fever mosquito, Aedes aegypti. Chem. Senses 24, 647–653 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bernier, U. R., Kline, D. L., Allan, S. A. & Barnard, D. R. Laboratory comparison of Aedes aegypti attraction to human odors and to synthetic human odor compounds and blends. J. Am. Mosq. Control Assoc. 23, 288–293 (2007).

    PubMed 
    Article 

    Google Scholar
     

  • Mclver, S. B. Sensilla of mosquitoes (Diptera: Culicidae). J. Med. Entomol. 19, 489–535 (1982).

    Article 

    Google Scholar
     

  • Vosshall, L. B. & Stocker, R. F. Molecular architecture of smell and taste in. Drosophila. Annu. Rev. Neurosci. 30, 505–533 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • DeGennaro, M. et al. orco mutant mosquitoes lose strong preference for humans and are not repelled by volatile DEET. Nature 498, 487–491 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kistler, K. E., Vosshall, L. B. & Matthews, B. J. Genome engineering with CRISPR-Cas9 in the mosquito Aedes aegypti. Cell Rep. 11, 51–60 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Riabinina, O. et al. Organization of olfactory centres in the malaria mosquito Anopheles gambiae. Nat. Commun. 7, 13010 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Vargo, A. M. & Foster, W. A. Responsiveness of female Aedes aegypti (Diptera: Culicidae) to flower extracts. J. Med. Entomol. 19, 710–718 (1982).

    Article 

    Google Scholar
     

  • Brockerhoff, E. G. & Grant, G. G. Correction for differences in volatility among olfactory stimuli and effect on EAG responses of Dioryctria abietivorella to plant volatiles. J. Chem. Ecol. 25, 1353–1367 (1999).

    CAS 
    Article 

    Google Scholar
     

  • Woolfenden, E. In Gas Chromatography (ed. Poole, C. F.) 235–289 (Elsevier, 2012).

  • Ignell, R., Dekker, T., Ghaninia, M. & Hansson, B. S. Neuronal architecture of the mosquito deutocerebrum. J. Comp. Neurol. 493, 207–240 (2005).

    PubMed 
    Article 

    Google Scholar
     

  • Cook, J. I. et al. Enantiomeric selectivity in behavioural and electrophysiological responses of Aedes aegypti and Culex quinquefasciatus mosquitoes. Bull. Entomol. Res. 101, 541–550 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Majeed, S., Hill, S. R., Birgersson, G. & Ignell, R. Detection and perception of generic host volatiles by mosquitoes modulate host preference: context dependence of (R)-1-octen-3-ol. R. Soc. Open Sci. 3, 160467 (2016).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Dekker, T., Steib, B., Cardé, R. T. & Geier, M. l-Lactic acid: a human-signifying host cue for the anthropophilic mosquito Anopheles gambiae. Med. Vet. Entomol. 16, 91–98 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Pitts, R. J., Derryberry, S. L., Zhang, Z. & Zwiebel, L. J. Variant ionotropic receptors in the malaria vector mosquito Anopheles gambiae tuned to amines and carboxylic acids. Sci Rep. 7, 40297 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Raji, J. I. et al. Aedes aegypti mosquitoes detect acidic volatiles found in human odor using the IR8a pathway. Curr. Biol. 29, 1253–1262 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wisthaler, A. & Weschler, C. J. Reactions of ozone with human skin lipids: sources of carbonyls, dicarbonyls, and hydroxycarbonyls in indoor air. Proc. Natl Acad. Sci. USA 107, 6568–6575 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Huang, Z.-R., Lin, Y.-K. & Fang, J.-Y. Biological and pharmacological activities of squalene and related compounds: potential uses in cosmetic dermatology. Molecules 14, 540–554 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Prouty, S. M. & Pappas, A. In Lipids and Skin Health (ed. Pappas, A.) 139–157 (Springer, 2015).

  • He, X. & Slupsky, C. M. Metabolic fingerprint of dimethyl sulfone (DMSO2) in microbial–mammalian co-metabolism. J. Proteome Res. 13, 5281–5292 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Dekker, T. & Cardé, R. T. Moment-to-moment flight manoeuvres of the female yellow fever mosquito (Aedes aegypti L.) in response to plumes of carbon dioxide and human skin odour. J. Exp. Biol. 214, 3480–3494 (2011).

    PubMed 
    Article 

    Google Scholar
     

  • Obaldia, M. E. D. et al. Differential mosquito attraction to humans is associated with skin-derived carboxylic acid levels. Preprint at bioRxiv https://doi.org/10.1101/2022.01.05.475088 (2022).

  • Nicolaides, N. Skin lipids: their biochemical uniqueness. Science 186, 19–26 (1974).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kligman, A. M. & Shelley, W. B. An investigation of the biology of the human sebaceous gland. J. Invest. Dermatol. 30, 99–125 (1958).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Green, S. C., Stewart, M. E. & Downing, D. T. Variation in sebum fatty acid composition among adult humans. J. Invest. Dermatol. 83, 114–117 (1984).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Pappas, A., Johnsen, S., Liu, J.-C. & Eisinger, M. Sebum analysis of individuals with and without acne. Dermatoendocrinol. 1, 157–161 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Source link