May 23, 2024
New land-use-change emissions indicate a declining CO2 airborne fraction – Nature

New land-use-change emissions indicate a declining CO2 airborne fraction – Nature

  • Canadell, J. G. et al. in Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021) (in the press).

  • McKinley, G. A., Fay, A. R., Takahashi, T. & Metzl, N. Convergence of atmospheric and North Atlantic carbon dioxide trends on multidecadal timescales. Nat. Geosci. 4, 606–610 (2011).

    ADS 
    CAS 

    Google Scholar
     

  • Schuur, E. A. G. et al. Climate change and the permafrost carbon feedback. Nature 520, 171–179 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Le Quéré, C., Raupach, M. R., Canadell, J. G. & Al, G. M. Trends in the sources and sinks of carbon dioxide. Nat. Geosci. 2, 831–836 (2009).

    ADS 

    Google Scholar
     

  • Raupach, M. R. et al. The declining uptake rate of atmospheric CO2 by land and ocean sinks. Biogeosciences 11, 3453–3475 (2014).

    ADS 

    Google Scholar
     

  • Knorr, W. Is the airborne fraction of anthropogenic CO2 emissions increasing? Geophys. Res. Lett. 36, L21710 (2009).

    ADS 

    Google Scholar
     

  • Gloor, M., Sarmiento, J. L. & Gruber, N. What can be learned about carbon cycle climate feedbacks from the CO2 airborne fraction? Atmos. Chem. Phys. 10, 7739–7751 (2010).

    ADS 
    CAS 

    Google Scholar
     

  • Keenan, T. F. et al. Recent pause in the growth rate of atmospheric CO2 due to enhanced terrestrial carbon uptake. Nat. Commun. 7, 13428 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sarmiento, J. L. et al. Trends and regional distributions of land and ocean carbon sinks. Biogeosciences 7, 2351–2367 (2010).

    ADS 
    CAS 

    Google Scholar
     

  • Ballantyne, A. P., Alden, C. B., Miller, J. B., Tans, P. P. & White, J. W. C. Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years. Nature 488, 70–72 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Friedlingstein, P. et al. Global carbon budget 2020. Earth Syst. Sci. Data 12, 3269–3340 (2020).

    ADS 

    Google Scholar
     

  • Mahowald, N. M. et al. Interactions between land use change and carbon cycle feedbacks. Global Biogeochem. Cycles 31, 96–113 (2017).

    CAS 

    Google Scholar
     

  • Field, R. D., van der Werf, G. R. & Shen, S. S. P. Human amplification of drought-induced biomass burning in Indonesia since 1960. Nat. Geosci. 2, 185–188 (2009).

    ADS 
    CAS 

    Google Scholar
     

  • van Marle, M. J. E. et al. Fire and deforestation dynamics in Amazonia (1973–2014). Global Biogeochem. Cycles 31, 24–38 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morton, D. C. et al. Cropland expansion changes deforestation dynamics in the southern Brazilian Amazon. Proc. Natl Acad. Sci. USA 103, 14637–14641 (2006).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Wees, D. et al. The role of fire in global forest loss dynamics. Glob. Change Biol. 27, 2377–2391 (2021).

    ADS 

    Google Scholar
     

  • Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A. & Totterdell, I. J. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408, 184–187 (2000).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Friedlingstein, P. & Prentice, I. Carbon–climate feedbacks: a review of model and observation based estimates. Curr. Opin. Environ. Sustain. 2, 251–257 (2010).


    Google Scholar
     

  • Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Piao, S. et al. Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature 451, 49–52 (2008).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hubau, W. et al. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579, 80–87 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Le Quéré, C. et al. Saturation of the Southern Ocean CO2 sink due to recent climate change. Science 316, 1735–1738 (2007).

    ADS 
    PubMed 

    Google Scholar
     

  • Miettinen, J., Shi, C. & Liew, S. C. Deforestation rates in insular Southeast Asia between 2000 and 2010. Glob. Change Biol. 17, 2261–2270 (2011).

    ADS 

    Google Scholar
     

  • Morton, D. C. et al. Agricultural intensification increases deforestation fire activity in Amazonia. Glob. Change Biol. 14, 2262–2275 (2008).

    ADS 

    Google Scholar
     

  • Otón, G., Lizundia-Loiola, J., Pettinari, M. L. & Chuvieco, E. Development of a consistent global long-term burned area product (1982–2018) based on AVHRR-LTDR data. Int. J. Appl. Earth Obs. Geoinf. 103, 102473 (2021).


    Google Scholar
     

  • van der Werf, G. R. et al. Global fire emissions estimates during 1997–2016. Earth Syst. Sci. Data 9, 697–720 (2017).

    ADS 

    Google Scholar
     

  • Houghton, R. A. & Nassikas, A. A. Global and regional fluxes of carbon from land use and land-cover change 1850–2015. Global Biogeochem. Cycles 31, 456–472 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • Brondizio, E. S. & Moran, E. F. Level-dependent deforestation trajectories in the Brazilian Amazon from 1970 to 2001. Popul. Environ. 34, 69–85 (2012).


    Google Scholar
     

  • Houghton, R. A. How well do we know the flux of CO2 from land-use change? Tellus B Chem. Phys. Meteorol. 62, 337–351 (2010).

    ADS 

    Google Scholar
     

  • van der Werf, G. R. et al. Continental-scale partitioning of fire emissions during the 1997 to 2001 El Niño/La Niña period. Science 303, 73–76 (2004).

    ADS 
    PubMed 

    Google Scholar
     

  • Tans, P. & Keeling, R. Trends in atmospheric carbon dioxide. National Oceanic & Atmospheric Administration, Earth System Research Laboratories (NOAA/ESRL) and Scripps Institution of Oceanography. http://www.esrl.noaa.gov/gmd/ccgg/trends/ and http://scrippsco2.ucsd.edu/ (accessed 24 January 2021).

  • Boden, T. A., Marland, G. & Andres, R. J. Global, regional, and national fossil-fuel CO2 emissions. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy. http://cdiac.ornl.gov/trends/emis/overview_2013.htmlhttps://doi.org/10.3334/CDIAC/00001_V2016 (2016).

  • Ramo, R. et al. African burned area and fire carbon emissions are strongly impacted by small fires undetected by coarse resolution satellite data. Proc. Natl Acad. Sci. USA 118, e2011160118 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Booth, B. B. B. et al. Narrowing the range of future climate projections using historical observations of atmospheric CO2. J. Clim. 30, 3039––3053 (2017).

    ADS 

    Google Scholar
     

  • Hausfather, Z. & Peters, G. P. Emissions – the ‘business as usual’ story is misleading. Nature 577, 618–620 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Schwalm, C. R., Glendon, S. & Duffy, P. B. RCP8.5 tracks cumulative CO2 emissions. Proc. Natl Acad. Sci. USA 117, 19656–19657 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jones, C. et al. Twenty-first-century compatible CO2 emissions and airborne fraction simulated by CMIP5 earth system models under four representative concentration pathways. J. Clim. 26, 4398–4413 (2013).

    ADS 

    Google Scholar
     

  • Gruber, N. Carbon at the coastal interface. Nature 517, 148–149 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zaehle, S. & Friend, A. D. Carbon and nitrogen cycle dynamics in the O-CN land surface model: 1. Model description, site-scale evaluation, and sensitivity to parameter estimates. Global Biogeochem. Cycles 24, GB1005 (2010).

    ADS 

    Google Scholar
     

  • Mercado, L. M. et al. Impact of changes in diffuse radiation on the global land carbon sink. Nature 458, 1014–1017 (2009).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ballantyne, A. et al. Accelerating net terrestrial carbon uptake during the warming hiatus due to reduced respiration. Nat. Clim. Change 7, 148–152 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • Watson, A. J. et al. Revised estimates of ocean-atmosphere CO2 flux are consistent with ocean carbon inventory. Nat. Commun. 11, 4422 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, S. et al. Recent global decline of CO2 fertilization effects on vegetation photosynthesis. Science 370, 1295–1300 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Trade. FAOSTAT online database. Food and Agriculture Organization of the United Nations http://www.fao.org/faostat/en/#data (accessed 19 August 2021).

  • Gilfillan, D. & Marland, G. CDIAC-FF: global and national CO2 emissions from fossil fuel combustion and cement manufacture: 1751–2017. Earth Syst. Sci. Data 13, 1667–1680 (2021).

    ADS 

    Google Scholar
     

  • Liu, Z. et al. Reduced carbon emission estimates from fossil fuel combustion and cement production in China. Nature 524, 335–338 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Houghton, R. A. Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850–2000. Tellus B Chem. Phys. Meteorol. 55, 378–390 (2003).

    ADS 

    Google Scholar
     

  • Hooijer, A. et al. Current and future CO2 emissions from drained peatlands in Southeast Asia. Biogeosciences 7, 1505–1514 (2010).

    ADS 
    CAS 

    Google Scholar
     

  • Hansis, E., Davis, S. J. & Pongratz, J. Relevance of methodological choices for accounting of land use change carbon fluxes. Global Biogeochem. Cycles 29, 1230–1246 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • Gasser, T. et al. Historical CO2 emissions from land use and land cover change and their uncertainty. Biogeosciences 17, 4075–4101 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Field, R. D. et al. Indonesian fire activity and smoke pollution in 2015 show persistent nonlinear sensitivity to El Niño-induced drought. Proc. Natl Acad. Sci. USA 113, 9204–9209 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Marle, M. J. E. et al. Historic global biomass burning emissions for CMIP6 (BB4CMIP) based on merging satellite observations with proxies and fire models (1750–2015). Geosci. Model Dev. 10, 3329–3357 (2017).

    ADS 

    Google Scholar
     

  • van der Werf, G. R. et al. CO2 emissions from forest loss. Nat. Geosci. 2, 737–738 (2009).

    ADS 

    Google Scholar
     

  • Dlugokencky, E. & Tans, P. Trends in atmospheric carbon dioxide. National Oceanic & Atmospheric Administration, Earth System Research Laboratory (NOAA/ESRL) http://www.esrl.noaa.gov/gmd/ccgg/trends/gl_gr.html (accessed 19 August 2021).

  • Gregg, J. S., Andres, R. J. & Marland, G. China: emissions pattern of the world leader in CO2 emissions from fossil fuel consumption and cement production. Geophys. Res. Lett. 35, L08806 (2008).

    ADS 

    Google Scholar
     

  • Raupach, M. R., Canadell, J. G. & Le Quéré, C. Anthropogenic and biophysical contributions to increasing atmospheric CO2 growth rate and airborne fraction. Biogeosciences 5, 1601–1613 (2008).

    ADS 
    CAS 

    Google Scholar
     

  • Ammann, C. M. A monthly and latitudinally varying volcanic forcing dataset in simulations of 20th century climate. Geophys. Res. Lett. 30, 483–487 (2003).


    Google Scholar
     

  • Riahi, K. et al. RCP 8.5—a scenario of comparatively high greenhouse gas emissions. Clim. Change 109, 33–57 (2011).

    ADS 
    CAS 

    Google Scholar
     

  • Source link