April 26, 2024
NMR-guided directed evolution – Nature

NMR-guided directed evolution – Nature

  • Bornscheuer, U. T. et al. Engineering the third wave of biocatalysis. Nature 485, 185–194 (2012).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Reetz, M. T. Laboratory evolution of stereoselective enzymes: a prolific source of catalysts for asymmetric reactions. Angew. Chem. Int. Ed. Engl. 50, 138–174 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Denard, C. A., Ren, H. & Zhao, H. Improving and repurposing biocatalysts via directed evolution. Curr. Opin. Chem. Biol. 25, 55–64 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chen, K. & Arnold, F. H. Engineering new catalytic activities in enzymes. Nat. Catal. 3, 203–213 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Reetz, M. T., Wilensek, S., Zha, D. & Jaeger, K. E. Directed evolution of an enantioselective enzyme through combinatorial multiple-cassette mutagenesis. Angew. Chem. Int. Ed. Engl. 40, 3589–3591 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wijma, H. J., Floor, R. J. & Janssen, D. B. Structure- and sequence-analysis inspired engineering of proteins for enhanced thermostability. Curr. Opin. Struct. Biol. 23, 588–594 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Planas-Iglesias, J. et al. Computational design of enzymes for biotechnological applications. Biotechnol. Adv. 47, 107696 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Verma, R., Schwaneberg, U. & Roccatano, D. Computer-aided protein directed evolution: a review of web servers, databases and other computational tools for protein engineering. Comput. Struct. Biotechnol. J. 2, e201209008 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ebert, M. C. & Pelletier, J. N. Computational tools for enzyme improvement: why everyone can – and should – use them. Curr. Opin. Chem. Biol. 37, 89–96 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Osuna, S. The challenge of predicting distal active site mutations in computational enzyme design. WIREs Comput. Mol. Sci. 11, e1502 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Wu, Z., Kan, S. B. J., Lewis, R. D., Wittmann, B. J. & Arnold, F. H. Machine learning-assisted directed protein evolution with combinatorial libraries. Proc. Natl Acad. Sci. USA 116, 8852–8858 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar
     

  • Acevedo-Rocha, C. G. et al. Pervasive cooperative mutational effects on multiple catalytic enzyme traits emerge via long-range conformational dynamics. Nat. Commun. 12, 1621 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar
     

  • Otten, R. et al. How directed evolution reshapes the energy landscape in an enzyme to boost catalysis. Science 370, 1442–1446 (2020).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Campbell, E. et al. The role of protein dynamics in the evolution of new enzyme function. Nat. Chem. Biol. 12, 944–950 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hong, N. S. et al. The evolution of multiple active site configurations in a designed enzyme. Nat. Commun. 9, 3900 (2018).

    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar
     

  • Broom, A. et al. Ensemble-based enzyme design can recapitulate the effects of laboratory directed evolution in silico. Nat. Commun. 11, 4808 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar
     

  • Warshel, A. et al. Electrostatic basis for enzyme catalysis. Chem. Rev. 106, 3210–3235 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kemp, D. S. & Casey, M. L. Physical organic chemistry of benzisoxazoles. II. Linearity of the Bronsted free energy relationship for the base-catalyzed decomposition of benzisoxazoles. J. Am. Chem. Soc. 95, 6670–6680 (1973).

    CAS 
    Article 

    Google Scholar
     

  • Rothlisberger, D. et al. Kemp elimination catalysts by computational enzyme design. Nature 453, 190–195 (2008).

    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Blomberg, R. et al. Precision is essential for efficient catalysis in an evolved Kemp eliminase. Nature 503, 418–421 (2013).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Risso, V. A. et al. De novo active sites for resurrected Precambrian enzymes. Nat. Commun. 8, 16113 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar
     

  • Merski, M. & Shoichet, B. K. Engineering a model protein cavity to catalyze the Kemp elimination. Proc. Natl Acad. Sci. USA 109, 16179–16183 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar
     

  • Debler, E. W., Muller, R., Hilvert, D. & Wilson, I. A. An aspartate and a water molecule mediate efficient acid–base catalysis in a tailored antibody pocket. Proc. Natl Acad. Sci. USA 106, 18539–18544 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar
     

  • Vaissier, V., Sharma, S. C., Schaettle, K., Zhang, T. & Head-Gordon, T. Computational optimization of electric fields for improving catalysis of a designed Kemp eliminase. ACS Catal. 8, 219–227 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Lamba, V. et al. Kemp eliminase activity of ketosteroid isomerase. Biochemistry 56, 582–591 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Risso, V. A. et al. Enhancing a de novo enzyme activity by computationally-focused ultra-low-throughput screening. Chem. Sci. 11, 6134–6148 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Li, A. et al. A redox-mediated Kemp eliminase. Nat. Commun. 8, 14876 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar
     

  • Miao, Y., Metzner, R. & Asano, Y. Kemp elimination catalyzed by naturally occurring aldoxime dehydratases. ChemBioChem 18, 451–454 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bordeaux, M., Tyagi, V. & Fasan, R. Highly diastereoselective and enantioselective olefin cyclopropanation using engineered myoglobin-based catalysts. Angew. Chem. Int. Ed. Engl. 54, 1744–1748 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yi, J., Heinecke, J., Tan, H., Ford, P. C. & Richter-Addo, G. B. The distal pocket histidine residue in horse heart myoglobin directs the O-binding mode of nitrite to the heme iron. J. Am. Chem. Soc. 131, 18119–18128 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wang, B. et al. Nitrosyl myoglobins and their nitrite precursors: crystal structural and quantum mechanics and molecular mechanics theoretical investigations of preferred Fe–NO ligand orientations in myoglobin distal pockets. Biochemistry 57, 4788–4802 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Korendovych, I. V. et al. Design of a switchable eliminase. Proc. Natl Acad. Sci. USA 108, 6823–6827 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar
     

  • Moroz, O. V. et al. A single mutation in a regulatory protein produces evolvable allosterically regulated catalyst of nonnatural reaction. Angew. Chem. Int. Ed. Engl. 52, 6246–6249 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chattopadhyaya, R., Meador, W. E., Means, A. R. & Quiocho, F. A. Calmodulin structure refined at 1.7 Å resolution. J. Mol. Biol. 228, 1177–1192 (1992).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Marshall, L. R., Zozulia, O., Lengyel-Zhand, Z. & Korendovych, I. V. Minimalist de novo design of protein catalysts. ACS Catal. 9, 9265–9275 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Casey, M. L., Kemp, D. S., Paul, K. G. & Cox, D. D. Physical organic chemistry of benzisoxazoles. I. Mechanism of base-catalyzed decomposition of benzisoxazoles. J. Org. Chem. 38, 2294–2301 (1973).

    CAS 
    Article 

    Google Scholar
     

  • Berry, E. A. & Trumpower, B. L. Simultaneous determination of hemes a, hemes b, and hemes c from pyridine hemochrome spectra. Anal. Biochem. 161, 1–15 (1987).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Barik, S. in PCR Cloning Protocols (eds. Chen, B.-Y. & Janes H.) 189–196 (Humana Press, 2002).

  • Delaglio, F. et al. NMRPipe—a multidimensional spectral processing system based on UNIX Pipes. J. Biomol. NMR 6, 277–293 (1995).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Vranken, W. F. et al. The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins 59, 687–696 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kannt, A., Young, S. & Bendall, D. S. The role of acidic residues of plastocyanin in its interaction with cytochrome f. Biochim. Biophys. Acta 1277, 115–126 (1996).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Storoni, L. C., McCoy, A. J. & Read, R. J. Likelihood-enhanced fast rotation functions. Acta Crystallogr. D 60, 432–438 (2004).

    PubMed 
    Article 

    Google Scholar
     

  • Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D 66, 12–21 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Trott, O. & Olson, A. J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J. Comput. Chem. 31, 455–461 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Makhlynets, O. V. & Korendovych, I. V. Minimalist design of allosterically regulated protein catalysts. Meth. Enzymol. 580, 191–202 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Source link