May 5, 2024
Nodeless electron pairing in CsV3Sb5-derived kagome superconductors – Nature

Nodeless electron pairing in CsV3Sb5-derived kagome superconductors – Nature

  • Syôzi, I. Statistics of kagomé lattice. Prog. Theor. Phys. 6, 306–308 (1951).

    Article 
    ADS 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Yu, S.-L. & Li, J.-X. Chiral superconducting phase and chiral spin-density-wave phase in a Hubbard model on the kagome lattice. Phys. Rev. B 85, 144402 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Kiesel, M. L., Platt, C. & Thomale, R. Unconventional Fermi surface instabilities in the kagome Hubbard model. Phys. Rev. Lett. 110, 126405 (2013).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Wang, W.-S., Li, Z.-Z., Xiang, Y.-Y. & Wang, Q.-H. Competing electronic orders on kagome lattices at van Hove filling. Phys. Rev. B 87, 115135 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Ortiz, B. R. et al. New kagome prototype materials: discovery of KV3Sb5, RbV3Sb5, and CsV3Sb5. Phys. Rev. Mater. 3, 094407 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Ortiz, B. R. et al. CsV3Sb5: a Z2 topological kagome metal with a superconducting ground state. Phys. Rev. Lett. 125, 247002 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yin, J.-X., Lian, B. & Hasan, M. Z. Topological kagome magnets and superconductors. Nature 612, 647–657 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang, Y.-X. et al. Unconventional chiral charge order in kagome superconductor KV3Sb5. Nat. Mater. 20, 1353–1357 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mielke, C. et al. Time-reversal symmetry-breaking charge order in a kagome superconductor. Nature 602, 245–250 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, H. et al. Roton pair density wave in a strong-coupling kagome superconductor. Nature 599, 222–228 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, H.-S. et al. Multiband superconductivity with sign-preserving order parameter in kagome superconductor CsV3Sb5. Phys. Rev. Lett. 127, 187004 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, C. et al. Nodal superconductivity and superconducting domes in the topological Kagome metal CsV3Sb5. Preprint at https://doi.org/10.48550/arXiv.2102.08356 (2021).

  • Mu, C. et al. S-wave superconductivity in kagome metal CsV3Sb5 revealed by 121/123Sb NQR and 51V NMR measurements. Chin. Phys. Lett. 38, 077402 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Duan, W. et al. Nodeless superconductivity in the kagome metal CsV3Sb5. Sci. China Phys. Mech. Astron. 64, 107462 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gupta, R. et al. Microscopic evidence for anisotropic multigap superconductivity in the CsV3Sb5 kagome superconductor. npj Quantum Mater. 7, 49 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Guguchia, Z. et al. Tunable nodal kagome superconductivity in charge ordered RbV3Sb5. Nat. Commun. 14, 153 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Lou, R. et al. Charge-density-wave-induced peak-dip-hump structure and the multiband superconductivity in a kagome superconductor CsV3Sb5. Phys. Rev. Lett. 128, 036402 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, X. et al. Nature of unconventional pairing in the kagome superconductors AV3Sb5 (A = K, Rb, Cs). Phys. Rev. Lett. 127, 177001 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tazai, R., Yamakawa, Y., Onari, S. & Kontani, H. Mechanism of exotic density-wave and beyond-Migdal unconventional superconductivity in kagome metal AV3Sb5 (A = K, Rb, Cs). Sci. Adv. 8, eabl4108 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gu, Y., Zhang, Y., Feng, X., Jiang, K. & Hu, J. Gapless excitations inside the fully gapped kagome superconductors AV3Sb5. Phys. Rev. B 105, L100502 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Keimer, B., Kivelson, S. A., Norman, M. R., Uchida, S. & Zaanen, J. From quantum matter to high-temperature superconductivity in copper oxides. Nature 518, 179–186 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Fernandes, R. M. et al. Iron pnictides and chalcogenides: a new paradigm for superconductivity. Nature 601, 35–44 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • He, R.-H. et al. Energy gaps in the failed high-Tc superconductor La1.875Ba0.125CuO4. Nat. Phys. 5, 119–123 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Neupert, T., Denner, M. M., Yin, J.-X., Thomale, R. & Hasan, M. Z. Charge order and superconductivity in kagome materials. Nat. Phys. 18, 137–143 (2021).

    Article 

    Google Scholar
     

  • Khasanov, R. et al. Time-reversal symmetry broken by charge order in CsV3Sb5. Phys. Rev. Res. 4, 023244 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Xu, Y. et al. Three-state nematicity and magneto-optical Kerr effect in the charge density waves in kagome superconductors. Nat. Phys. 18, 1470–1475 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Xiang, Y. et al. Twofold symmetry of c-axis resistivity in topological kagome superconductor CsV3Sb5 with in-plane rotating magnetic field. Nat. Commun. 12, 6727 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, H. et al. Rotation symmetry breaking in the normal state of a kagome superconductor KV3Sb5. Nat. Phys. 18, 265–270 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Chen, K. et al. Double superconducting dome and triple enhancement of Tc in the kagome superconductor CsV3Sb5 under high pressure. Phys. Rev. Lett. 126, 247001 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu, F. et al. Unusual competition of superconductivity and charge-density-wave state in a compressed topological kagome metal. Nat. Commun. 12, 3645 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, S.-Y. et al. Giant, unconventional anomalous Hall effect in the metallic frustrated magnet candidate, KV3Sb5. Sci. Adv. 6, eabb6003 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, F. et al. Concurrence of anomalous Hall effect and charge density wave in a superconducting topological kagome metal. Phys. Rev. B 104, L041103 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sobota, J. A., He, Y. & Shen, Z.-X. Angle-resolved photoemission studies of quantum materials. Rev. Mod. Phys. 93, 025006 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kang, M. et al. Twofold van Hove singularity and origin of charge order in topological kagome superconductor CsV3Sb5. Nat. Phys. 18, 301–308 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Hu, Y. et al. Rich nature of Van Hove singularities in Kagome superconductor CsV3Sb5. Nat. Commun. 13, 2220 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, Y. et al. Tuning the competition between superconductivity and charge order in the kagome superconductor Cs(V1−xNbx)3Sb5. Phys. Rev. B 105, L180507 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Luo, H. et al. Electronic nature of charge density wave and electron-phonon coupling in kagome superconductor KV3Sb5. Nat. Commun. 13, 273 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhong, Y. et al. Testing electron-phonon coupling for the superconductivity in kagome metal CsV3Sb5. Preprint at https://doi.org/10.48550/arXiv.2207.02407 (2022).

  • Gupta, R. et al. Two types of charge order with distinct interplay with superconductivity in the kagome material CsV3Sb5. Commun. Phys. 5, 232 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Shimojima, T., Okazaki, K. & Shin, S. Low-temperature and high-energy-resolution laser photoemission spectroscopy. J. Phys. Soc. Jpn 84, 072001 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Reber, T., Plumb, N., Waugh, J. & Dessau, D. Effects, determination, and correction of count rate nonlinearity in multi-channel analog electron detectors. Rev. Sci. Instrum. 85, 043907 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Matsui, H. et al. BCS-like Bogoliubov quasiparticles in high-Tc superconductors observed by angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 90, 217002 (2003).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Shimojima, T. et al. Orbital-independent superconducting gaps in iron pnictides. Science 332, 564–567 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Okazaki, K. et al. Octet-line node structure of superconducting order parameter in KFe2As2. Science 337, 1314–1317 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, C. et al. Coexistence of two intertwined charge density waves in a kagome system. Phys. Rev. Res. 4, 033072 (2021).

    Article 

    Google Scholar
     

  • Valla, T., Fedorov, A. V., Johnson, P. D. & Hulbert, S. L. Many-body effects in angle-resolved photoemission: quasiparticle energy and lifetime of a Mo(110) surface state. Phys. Rev. Lett. 83, 2085–2088 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lanzara, A. et al. Evidence for ubiquitous strong electron–phonon coupling in high-temperature superconductors. Nature 412, 510–514 (2001).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Johnson, P. et al. Doping and temperature dependence of the mass enhancement observed in the cuprate Bi2Sr2CaCu2O8+δ. Phys. Rev. Lett. 87, 177007 (2001).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Source link