May 29, 2024

Non-genetic determinants of malignant clonal fitness at single-cell resolution – Nature

  • 1.

    Turajlic, S., Sottoriva, A., Graham, T. & Swanton, C. Resolving genetic heterogeneity in cancer. Nat. Rev. Genet. 20, 404–416 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 2.

    Marine, J. C., Dawson, S. J. & Dawson, M. A. Non-genetic mechanisms of therapeutic resistance in cancer. Nat. Rev. Cancer 20, 743–756 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 3.

    Rodriguez-Fraticelli, A. E. et al. Single-cell lineage tracing unveils a role for TCF15 in haematopoiesis. Nature 583, 585–589 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 4.

    Lin, D. S. et al. DiSNE movie visualization and assessment of clonal kinetics reveal multiple trajectories of dendritic cell development. Cell Rep. 22, 2557–2566 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 5.

    Greaves, M. When one mutation is all it takes. Cancer Cell 27, 433–434 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 6.

    Visvader, J. E. Cells of origin in cancer. Nature 469, 314–322 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 7.

    Krivtsov, A. V. et al. Cell of origin determines clinically relevant subtypes of MLL-rearranged AML. Leukemia 27, 852–860 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 8.

    Pendleton, M., Lindsey, R. H. Jr, Felix, C. A., Grimwade, D. & Osheroff, N. Topoisomerase II and leukemia. Ann. N. Y. Acad. Sci. 1310, 98–110 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 9.

    Somervaille, T. C. & Cleary, M. L. Identification and characterization of leukemia stem cells in murine MLL-AF9 acute myeloid leukemia. Cancer Cell 10, 257–268 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • 10.

    Krivtsov, A. V. et al. Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature 442, 818–822 (2006).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 11.

    Dahlin, J. S. et al. A single-cell hematopoietic landscape resolves 8 lineage trajectories and defects in Kit mutant mice. Blood 131, e1–e11 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 12.

    Matsuo, H. et al. Fusion partner-specific mutation profiles and KRAS mutations as adverse prognostic factors in MLL-rearranged AML. Blood Adv. 4, 4623–4631 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 13.

    The Cancer Genome Atlas Research Network. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N. Engl. J. Med. 368, 2059–2074 (2013).

    PubMed Central 

    Google Scholar
     

  • 14.

    Shaffer, S. M. et al. Rare cell variability and drug-induced reprogramming as a mode of cancer drug resistance. Nature 546, 431–435 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 15.

    Raj, A. & van Oudenaarden, A. Nature, nurture, or chance: stochastic gene expression and its consequences. Cell 135, 216–226 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 16.

    Larsson, A. J. M. et al. Genomic encoding of transcriptional burst kinetics. Nature 565, 251–254 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 17.

    MacPherson, L. et al. HBO1 is required for the maintenance of leukaemia stem cells. Nature 577, 266–270 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 18.

    Coombs, C. C., Tavakkoli, M. & Tallman, M. S. Acute promyelocytic leukemia: where did we start, where are we now, and the future. Blood Cancer J. 5, e304 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 19.

    Jones, C. L., Inguva, A. & Jordan, C. T. Targeting energy metabolism in cancer stem cells: progress and challenges in leukemia and solid tumors. Cell Stem Cell 28, 378–393 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • 20.

    Zuber, J. et al. Mouse models of human AML accurately predict chemotherapy response. Genes Dev. 23, 877–889 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 21.

    Duy, C. et al. Chemotherapy induces senescence-like resilient cells capable of initiating AML recurrence. Cancer Discov. 11, 1542–1561 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 22.

    Bell, C. C. et al. Targeting enhancer switching overcomes non-genetic drug resistance in acute myeloid leukaemia. Nat. Commun. 10, 2723 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 23.

    Rambow, F. et al. Toward minimal residual disease-directed therapy in melanoma. Cell 174, 843–855 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 24.

    Fong, C. Y. et al. BET inhibitor resistance emerges from leukaemia stem cells. Nature 525, 538–542 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 25.

    Shlush, L. I. et al. Tracing the origins of relapse in acute myeloid leukaemia to stem cells. Nature 547, 104–108 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 26.

    Zorita, E., Cusco, P. & Filion, G. J. Starcode: sequence clustering based on all-pairs search. Bioinformatics 31, 1913–1919 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 27.

    Silver, D. P. & Livingston, D. M. Self-excising retroviral vectors encoding the Cre recombinase overcome Cre-mediated cellular toxicity. Mol. Cell 8, 233–243 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • 28.

    Kebschull, J. M. & Zador, A. M. Cellular barcoding: lineage tracing, screening and beyond. Nat. Methods 15, 871–879 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 29.

    Naik, S. H., Schumacher, T. N. & Perie, L. Cellular barcoding: a technical appraisal. Exp. Hematol. 42, 598–608 (2014).

    PubMed 

    Google Scholar
     

  • 30.

    Ye, M. et al. Hematopoietic differentiation is required for initiation of acute myeloid leukemia. Cell Stem Cell 17, 611–623 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 31.

    Naik, S. H. et al. Diverse and heritable lineage imprinting of early haematopoietic progenitors. Nature 496, 229–232 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 32.

    Langmead, B. Aligning short sequencing reads with Bowtie. Curr. Protoc. Bioinform. 32, 11.7.1–11.7.14 (2010).


    Google Scholar
     

  • 33.

    Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 34.

    Scheinin, I. et al. DNA copy number analysis of fresh and formalin-fixed specimens by shallow whole-genome sequencing with identification and exclusion of problematic regions in the genome assembly. Genome Res. 24, 2022–2032 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 35.

    McLaren, W. et al. The Ensembl variant effect predictor. Genome Biol. 17, 122 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 36.

    Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 37.

    Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 38.

    Stoeckius, M. et al. Cell hashing with barcoded antibodies enables multiplexing and doublet detection for single cell genomics. Genome Biol. 19, 224 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 39.

    Hafemeister, C. & Satija, R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol. 20, 296 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 40.

    Becht, E. et al. Dimensionality reduction for visualizing single-cell data using UMAP. Nat. Biotechnol. 37, 38–44 (2018).


    Google Scholar
     

  • 41.

    Zappia, L. & Oshlack, A. Clustering trees: a visualization for evaluating clusterings at multiple resolutions. Gigascience 7, giy083 (2018).

    PubMed Central 

    Google Scholar
     

  • 42.

    Finak, G. et al. MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol. 16, 278, (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 43.

    Michailidou, K. et al. Association analysis identifies 65 new breast cancer risk loci. Nature 551, 92–94, (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 44.

    Marjanovic, N. D. et al. emergence of a high-plasticity cell state during lung cancer evolution. Cancer Cell 38, 229–246 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 45.

    Azizi, E. et al. Single-cell map of diverse immune phenotypes in the breast tumor microenvironment. Cell 174, 1293–1308 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Source link