May 28, 2024

Non-Hermitian topological whispering gallery – Nature

  • 1.

    Lord Rayleigh The Theory of Sound Vol. II, 1st edn (MacMillan, 1878).

  • 2.

    Lord Rayleigh CXII. The problem of the whispering gallery. Phil. Mag. 20, 1001–1004 (1910).

    MATH 
    Article 

    Google Scholar
     

  • 3.

    Fleury, R., Sounas, D. L. & Alù, A. Parity–time symmetry in acoustics: theory, devices, and potential applications. IEEE J. Sel. Top. Quantum Electron. 22, 121–129 (2016).

    ADS 
    Article 

    Google Scholar
     

  • 4.

    Gupta, S. K. et al. Parity–time symmetry in non-Hermitian complex optical media. Adv. Mater. 32, 1903639 (2020).

    CAS 

    Google Scholar
     

  • 5.

    Zhang, X., Xiao, M., Cheng, Y., Lu, M.-H. & Christensen, J. Topological sound. Commun. Phys. 1, 97 (2018).

    Article 

    Google Scholar
     

  • 6.

    Khanikaev, A. B. et al. Photonic topological insulators. Nat. Mater. 12, 233–239 (2013).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 7.

    Gong, Z. et al. Topological phases of non-Hermitian systems. Phys. Rev. X 8, 031079 (2018).

    CAS 

    Google Scholar
     

  • 8.

    Foa Torres, L. E. F. Perspective on topological states of non-Hermitian lattices. J. Phys. Mater. 3, 014002 (2019).

    Article 
    CAS 

    Google Scholar
     

  • 9.

    Lee, T. E. Anomalous edge state in a non-Hermitian lattice. Phys. Rev. Lett. 116, 133903 (2016).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 10.

    Wang, M., Ye, L., Christensen, J. & Liu, Z. Valley physics in non-Hermitian artificial acoustic boron nitride. Phys. Rev. Lett. 120, 246601 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 11.

    Zhang, Z., López, M. R., Cheng, Y., Liu, X. & Christensen, J. Non-Hermitian sonic second-order topological insulator. Phys. Rev. Lett. 122, 195501 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 12.

    Zhao, H. et al. Non-Hermitian topological light steering. Science 365, 1163–1166 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 13.

    Yao, S. & Wang, Z. Edge states and topological invariants of non-Hermitian systems. Phys. Rev. Lett. 121, 086803 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 14.

    Song, F., Yao, S. & Wang, Z. Non-Hermitian topological invariants in real space. Phys. Rev. Lett. 123, 246801 (2019).

    ADS 
    MathSciNet 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 15.

    Okuma, N., Kawabata, K., Shiozaki, K. & Sato, M. Topological origin of non-Hermitian skin effects. Phys. Rev. Lett. 124, 086801 (2020).

    ADS 
    MathSciNet 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 16.

    Xiao, L. et al. Non-Hermitian bulk–boundary correspondence in quantum dynamics. Nat. Phys. 16, 761–766 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 17.

    Helbig, T. et al. Generalized bulk–boundary correspondence in non-Hermitian topolectrical circuits. Nat. Phys. 16, 747–750 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 18.

    Weidemann, S. et al. Topological funneling of light. Science 368, 311–314 (2020).

    ADS 
    MathSciNet 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 19.

    Parto, M. et al. Edge-mode lasing in 1D topological active arrays. Phys. Rev. Lett. 120, 113901 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 20.

    St-Jean, P. et al. Lasing in topological edge states of a one-dimensional lattice. Nat. Photon. 11, 651–656 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 21.

    Zhao, H. et al. Topological hybrid silicon microlasers. Nat. Commun. 9, 981 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 22.

    Bandres, M. A. et al. Topological insulator laser: experiments. Science 359, eaar4005 (2018).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 23.

    Klembt, S. et al. Exciton-polariton topological insulator. Nature 562, 552–556 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 24.

    Bahari, B. et al. Nonreciprocal lasing in topological cavities of arbitrary geometries. Science 358, 636–640 (2017).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 25.

    Zeng, Y. et al. Electrically pumped topological laser with valley edge modes. Nature 578, 246–250 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 26.

    Hutson, A. R., McFee, J. H. & White, D. L. Ultrasonic amplification in CdS. Phys. Rev. Lett. 7, 237–239 (1961).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 27.

    Arnold, H. & Crandall, I. The thermophone as a precision source of sound. Phys. Rev. 10, 22–38 (1917).

    ADS 
    Article 

    Google Scholar
     

  • 28.

    Xiao, L. et al. Flexible, stretchable, transparent carbon nanotube thin film loudspeakers. Nano Lett. 8, 4539–4545 (2008).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 29.

    Aliev, A. E., Lima, M. D., Fang, S. & Baughman, R. H. Underwater sound generation using carbon nanotube projectors. Nano Lett. 10, 2374–2380 (2010).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 30.

    Ma, T. & Shvets, G. All-Si valley-Hall photonic topological insulator. New J. Phys. 18, 025012 (2016).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • 31.

    Ye, L. et al. Observation of acoustic valley vortex states and valley-chirality locked beam splitting. Phys. Rev. B 95, 174106 (2017).

    ADS 
    Article 

    Google Scholar
     

  • 32.

    Lu, J. et al. Observation of topological valley transport of sound in sonic crystals. Nat. Phys. 13, 369–374 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 33.

    Ni, X., Gorlach, M. A., Alù, A. & Khanikaev, A. B. Topological edge states in acoustic kagome lattices. New J. Phys. 19, 055002 (2017).

    ADS 
    MathSciNet 
    Article 
    CAS 

    Google Scholar
     

  • 34.

    Zhang, Z. et al. Directional acoustic antennas based on valley-Hall topological insulators. Adv. Mater. 30, 1803229 (2018).

    Article 
    CAS 

    Google Scholar
     

  • 35.

    Mei, J., Wu, Y., Chan, C. T. & Zhang, Z.-Q. First-principles study of Dirac and Dirac-like cones in phononic and photonic crystals. Phys. Rev. B 86, 035141 (2012).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • 36.

    Makwana, M. P. & Craster, R. V. Geometrically navigating topological plate modes around gentle and sharp bends. Phys. Rev. B 98, 184105 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 37.

    Ochiai, T. Photonic realization of the (2+1)-dimensional parity anomaly. Phys. Rev. B 86, 075152 (2012).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • 38.

    Vesterinen, V., Niskanen, A. O., Hassel, J. & Helisto, P. Fundamental efficiency of nanothermophones: modeling and experiments. Nano Lett. 10, 5020–5024 (2010).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 39.

    Anderson, P. W. Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492–1505 (1958).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 40.

    Stützer, S. et al. Photonic topological Anderson insulators. Nature 560, 461–465 (2018).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 41.

    Liu, G.-G. et al. Topological Anderson insulator in disordered photonic crystals. Phys. Rev. Lett. 125, 133603 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 42.

    Zangeneh-Nejad, F. & Fleury, R. Disorder-induced signal filtering with topological metamaterials. Adv. Mater. 32, 2001034 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Source link