April 27, 2024
Norovirus MLKL-like protein initiates cell death to induce viral egress – Nature

Norovirus MLKL-like protein initiates cell death to induce viral egress – Nature

  • Karst, S. M., Wobus, C. E., Goodfellow, I. G., Green, K. Y. & Virgin, H. W. Advances in norovirus biology. Cell Host Microbe 15, 668–680 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Glass, R. I., Parashar, U. D. & Estes, M. K. Norovirus gastroenteritis. N. Engl. J. Med. 361, 1776–1785 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Karst, S. M. & Tibbetts, S. A. Recent advances in understanding norovirus pathogenesis: norovirus pathogenesis. J. Med. Virol. 88, 1837–1843 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elde, N. C. & Malik, H. S. The evolutionary conundrum of pathogen mimicry. Nat. Rev. Microbiol. 7, 787–797 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jorgensen, I., Rayamajhi, M. & Miao, E. A. Programmed cell death as a defence against infection. Nat. Rev. Immunol. 17, 151–164 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jorgensen, I. & Miao, E. A. Pyroptotic cell death defends against intracellular pathogens. Immunol. Rev. 265, 130–142 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McFadden, N. et al. Norovirus regulation of the innate immune response and apoptosis occurs via the product of the alternative open reading frame 4. PLoS Pathog. 7, e1002413 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Furman, L. M. et al. Cysteine protease activation and apoptosis in murine norovirus infection. Virol. J. 6, 139–139 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bok, K., Prikhodko, V. G., Green, K. Y. & Sosnovtsev, S. V. Apoptosis in murine norovirus-infected RAW264.7 cells is associated with downregulation of survivin. J. Virol. 83, 3647–3656 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dubois, H. et al. Nlrp3 inflammasome activation and gasdermin D-driven pyroptosis are immunopathogenic upon gastrointestinal norovirus infection. PLoS Pathog. 15, e1007709 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Santiana, M. et al. Vesicle-cloaked virus clusters are optimal units for inter-organismal viral transmission. Cell Host Microbe 24, 208–220.e8 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kayagaki, N. et al. NINJ1 mediates plasma membrane rupture during lytic cell death. Nature 591, 131–136 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wobus, C. E. et al. Replication of norovirus in cell culture reveals a tropism for dendritic cells and macrophages. PLoS Biol. 2, e432 (2004).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Degterev, A. et al. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat. Chem. Biol. 1, 112–119 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hildebrand, J. M. et al. Activation of the pseudokinase MLKL unleashes the four-helix bundle domain to induce membrane localization and necroptotic cell death. Proc. Natl Acad. Sci. USA 111, 15072–15077 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, L. et al. Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell 148, 213–227 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yen, J.-B. et al. Identification and characterization of human norovirus NTPase regions required for lipid droplet localization, cellular apoptosis, and interaction with the viral p22 protein. Microbiol. Spectr. 9, e00422-21 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yen, J.-B. et al. Subcellular localization and functional characterization of GII.4 norovirus-encoded NTPase. J. Virol. 92, e01824-17 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han, K. R. et al. Nucleotide triphosphatase and RNA chaperone activities of murine norovirus NS3. J. Gen. Virol. 99, 1482–1493 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, T.-F. et al. Human norovirus NS3 has RNA helicase and chaperoning activities. J. Virol. 92, e01606-17 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cotton, B. T. et al. The norovirus NS3 protein is a dynamic lipid- and microtubule-associated protein involved in viral RNA replication. J. Virol. 91, e02138-16 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thorne, L. G. & Goodfellow, I. G. Norovirus gene expression and replication. J. Gen. Virol. 95, 278–291 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Campillay-Véliz, C. P. et al. Human norovirus proteins: implications in the replicative cycle, pathogenesis, and the host immune response. Front. Immunol. 11, 961 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jones, M. K. et al. Enteric bacteria promote human and mouse norovirus infection of B cells. Science 346, 755–759 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, H. et al. Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3. Mol. Cell 54, 133–146 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Murphy, J. M. et al. The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism. Immunity 39, 443–453 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Green, K. Y. et al. A predominant role for Norwalk-like viruses as agents of epidemic gastroenteritis in Maryland nursing homes for the elderly. J. Infect. Dis. 185, 133–146 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Armenteros, J. J. A., Sønderby, C. K., Sønderby, S. K., Nielsen, H. & Winther, O. DeepLoc: prediction of protein subcellular localization using deep learning. Bioinformatics 33, 3387–3395 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Chu, C. T. et al. Cardiolipin externalization to the outer mitochondrial membrane acts as an elimination signal for mitophagy in neuronal cells. Nat. Cell Biol. 15, 1197–1205 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, J. et al. Role of phospholipid scramblase 3 in the regulation of tumor necrosis factor-α-induced apoptosis. Biochemistry 47, 4518–4529 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yunus, M. A., Chung, L. M. W., Chaudhry, Y., Bailey, D. & Goodfellow, I. Development of an optimized RNA-based murine norovirus reverse genetics system. J. Virol. Methods 169, 112–118 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nice, T. J., Strong, D. W., McCune, B. T., Pohl, C. S. & Virgin, H. W. A single-amino-acid change in murine norovirus NS1/2 is sufficient for colonic tropism and persistence. J. Virol. 87, 327–334 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Karst, S. M., Wobus, C. E., Lay, M., Davidson, J. & Virgin, H. W. IV STAT1-dependent innate immunity to a Norwalk-like virus. Science 299, 1575–1578 (2003).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Rogers, C. et al. Gasdermin pores permeabilize mitochondria to augment caspase-3 activation during apoptosis and inflammasome activation. Nat. Commun. 10, 1689 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bock, F. J. & Tait, S. W. G. Mitochondria as multifaceted regulators of cell death. Nat. Rev. Mol. Cell Bio. 21, 85–100 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Evavold, C. L. et al. Control of gasdermin D oligomerization and pyroptosis by the Ragulator–Rag–mTORC1 pathway. Cell 184, 4495–4511.e19 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Petrie, E. J. et al. Viral MLKL homologs subvert necroptotic cell death by sequestering cellular RIPK3. Cell Rep. 28, 3309–3319.e5 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Palmer, S., Chappidi, S., Pinkham, C. & Hancks, D. C. Evolutionary profile for (host and viral) MLKL indicates its activities as a battlefront for extensive counteradaptation. Mol. Biol. Evol. 38, msab256 (2021).

    Article 

    Google Scholar
     

  • Farag, N. S., Breitinger, U., Breitinger, H. G. & Azizi, M. A. E. Viroporins and inflammasomes: key to understand virus-induced inflammation. Int. J. Biochem. Cell Biol. 122, 105738 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nieva, J. L., Madan, V. & Carrasco, L. Viroporins: structure and biological functions. Nat. Rev. Microbiol. 10, 563–574 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mahdi, L. K. et al. Discovery of a family of mixed lineage kinase domain-like proteins in plants and their role in innate immune signaling. Cell Host Microbe 28, 813–824.e6 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Durbin, J. E., Hackenmiller, R., Simon, M. C. & Levy, D. E. Targeted disruption of the mouse Stat1 gene results in compromised innate immunity to viral disease. Cell 84, 443–450 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He, S. et al. Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-α. Cell 137, 1100–1111 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ward, V. K. et al. Recovery of infectious murine norovirus using Pol II-driven expression of full-length cDNA. Proc. Natl Acad. Sci. USA 104, 11050–11055 (2007).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Orchard, R. C. et al. Discovery of a proteinaceous cellular receptor for a norovirus. Science 353, 933–936 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baert, L. et al. Detection of murine norovirus by using plaque assay, transfection assay, and real-time reverse transcription–PCR before and after heat exposure. Appl. Environ. Microbiol. 74, 543–546 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hwang, S. et al. Murine norovirus: propagation, quantification, and genetic manipulation. Curr. Protoc. Microbiol. 33, 15K.2.1–15K.2.61 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Sanjana, N. E., Shalem, O. & Zhang, F. Improved vectors and genome-wide libraries for CRISPR screening. Nat. Methods 11, 783–784 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vinjé, J. et al. ICTV virus taxonomy profile: Caliciviridae. J. Gen. Virol. 100, 1469–1470 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Source link