May 29, 2024

Observation of Feshbach resonances between a single ion and ultracold atoms – Nature

  • 1.

    Bloch, I., Dalibard, J. & Zwerger, W. Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885–964 (2008).

    ADS 
    CAS 

    Google Scholar
     

  • 2.

    Leibfried, D., Blatt, R., Monroe, C. & Wineland, D. Quantum dynamics of single trapped ions. Rev. Mod. Phys. 75, 281–324 (2003).

    ADS 
    CAS 

    Google Scholar
     

  • 3.

    Wineland, D. Nobel lecture: Superposition, entanglement, and raising Schrödinger’s cat. Rev. Mod. Phys. 85, 1103–1114 (2013).

    ADS 
    CAS 

    Google Scholar
     

  • 4.

    Saffman, M., Walker, T. & Mølmer, K. Quantum information with Rydberg atoms. Rev. Mod. Phys. 82, 2313–2363 (2010).

    ADS 
    CAS 

    Google Scholar
     

  • 5.

    Katori, H. Optical lattice clocks and quantum metrology. Nat. Photon. 5, 203–210 (2011).

    ADS 
    CAS 

    Google Scholar
     

  • 6.

    Micke, P. et al. Coherent laser spectroscopy of highly charged ions using quantum logic. Nature 578, 60–65 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 7.

    Härter, A. & Hecker Denschlag, J. Cold atom–ion experiments in hybrid traps. Contemp. Phys. 55, 33–45 (2014).

    ADS 

    Google Scholar
     

  • 8.

    Tomza, M. et al. Cold hybrid ion–atom systems. Rev. Mod. Phys. 91, 035001 (2019).

    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • 9.

    Grier, A., Cetina, M., Oručević, F. & Vuletić, V. Observation of cold collisions between trapped ions and trapped atoms. Phys. Rev. Lett. 102, 223201 (2009).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 10.

    Rellergert, W. G. et al. Measurement of a large chemical reaction rate between ultracold closed-shell 40Ca atoms and open-shell 174Yb+ ions held in a hybrid atom–ion trap. Phys. Rev. Lett. 107, 243201 (2011).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 11.

    Ratschbacher, L., Zipkes, C., Sias, C. & Köhl, M. Controlling chemical reactions of a single particle. Nat. Phys. 8, 649–652 (2012).

    CAS 

    Google Scholar
     

  • 12.

    Hall, F., Aymar, M., Raoult, M., Dulieu, O. & Willitsch, S. Light-assisted cold chemical reactions of barium ions with rubidium atoms. Mol. Phys. 111, 1683–1690 (2013).

    ADS 
    CAS 

    Google Scholar
     

  • 13.

    Ratschbacher, L. et al. Decoherence of a single-ion qubit immersed in a spin-polarized atomic bath. Phys. Rev. Lett. 110, 160402 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 14.

    Meir, Z. et al. Dynamics of a ground-state cooled ion colliding with ultracold atoms. Phys. Rev. Lett. 117, 243401 (2016).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 15.

    Saito, R. et al. Characterization of charge-exchange collisions between ultracold 6Li atoms and 40Ca+ ions. Phys. Rev. A 95, 032709 (2017).

    ADS 

    Google Scholar
     

  • 16.

    Joger, J. et al. Observation of collisions between cold Li atoms and Yb+ ions. Phys. Rev. A 96, 030703 (2017).

    ADS 

    Google Scholar
     

  • 17.

    Fürst, H. et al. Dynamics of a single ion-spin impurity in a spin-polarized atomic bath. Phys. Rev. A 98, 012713 (2018).

    ADS 

    Google Scholar
     

  • 18.

    Sikorsky, T., Meir, Z., Ben-Shlomi, R., Akerman, N. & Ozeri, R. Spin-controlled atom–ion chemistry. Nat. Commun. 9, 920 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 19.

    Feldker, T. et al. Buffer gas cooling of a trapped ion to the quantum regime. Nat. Phys. 16, 413–416 (2020).

    CAS 

    Google Scholar
     

  • 20.

    Idziaszek, Z., Simoni, A., Calarco, T. & Julienne, P. Multichannel quantum-defect theory for ultracold atom–ion collisions. New J. Phys. 13, 083005 (2011).

    ADS 

    Google Scholar
     

  • 21.

    Tomza, M., Koch, C. & Moszynski, R. Cold interactions between an Yb+ ion and a Li atom: prospects for sympathetic cooling, radiative association, and Feshbach resonances. Phys. Rev. A 91, 042706 (2015).

    ADS 

    Google Scholar
     

  • 22.

    Härter, A. et al. Single ion as a three-body reaction center in an ultracold atomic gas. Phys. Rev. Lett. 109, 123201 (2012).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 23.

    Krükow, A., Mohammadi, A., Härter, A. & Denschlag, J. H. Reactive two-body and three-body collisions of Ba+ in an ultracold Rb gas. Phys. Rev. A 94, 030701 (2016).

    ADS 

    Google Scholar
     

  • 24.

    Cote, R., Kharchenko, V. & Lukin, M. Mesoscopic molecular ions in Bose–Einstein condensates. Phys. Rev. Lett. 89, 093001 (2002).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 25.

    Casteels, W., Tempere, J. & Devreese, J. Polaronic properties of an ion in a Bose–Einstein condensate in the strong-coupling limit. J. Low Temp. Phys. 162, 266–273 (2011).

    ADS 
    CAS 

    Google Scholar
     

  • 26.

    Jachymski, K. & Negretti, A. Quantum simulation of extended polaron models using compound atom–ion systems. Phys. Rev. Res. 2, 033326 (2020).

    CAS 

    Google Scholar
     

  • 27.

    Hirzler, H. et al. Controlling the nature of a charged impurity in a bath of Feshbach dimers. Phys. Rev. Res. 2, 033232 (2020).

    CAS 

    Google Scholar
     

  • 28.

    Doerk, H., Idziaszek, Z. & Calarco, T. Atom–ion quantum gate. Phys. Rev. A 81, 012708 (2010).

    ADS 

    Google Scholar
     

  • 29.

    Gerritsma, R. et al. Bosonic Josephson junction controlled by a single trapped ion. Phys. Rev. Lett. 109, 080402 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 30.

    Bissbort, U. et al. Emulating solid-state physics with a hybrid system of ultracold ions and atoms. Phys. Rev. Lett. 111, 080501 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 31.

    Inouye, S. et al. Observation of Feshbach resonances in a Bose–Einstein condensate. Nature 392, 151–154 (1998).

    ADS 
    CAS 

    Google Scholar
     

  • 32.

    Inouye, S. et al. Observation of heteronuclear Feshbach resonances in a mixture of bosons and fermions. Phys. Rev. Lett. 93, 183201 (2004).

    ADS 
    CAS 

    Google Scholar
     

  • 33.

    Barbé, V. et al. Observation of Feshbach resonances between alkali and closed-shell atoms. Nat. Phys. 14, 881–884 (2018).


    Google Scholar
     

  • 34.

    Yang, H. et al. Observation of magnetically tunable Feshbach resonances in ultracold 23Na40K + 40K collisions. Science 363, 261–264 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 35.

    Aikawa, K. et al. Bose–Einstein condensation of erbium. Phys. Rev. Lett. 108, 210401 (2012).

    ADS 
    CAS 

    Google Scholar
     

  • 36.

    Durastante, G. et al. Feshbach resonances in an erbium–dysprosium dipolar mixture. Phys. Rev. A 102, 033330 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • 37.

    Cetina, M., Grier, A. & Vuletić, V. Micromotion-induced limit to atom–ion sympathetic cooling in Paul traps. Phys. Rev. Lett. 109, 253201 (2012).

    ADS 

    Google Scholar
     

  • 38.

    Chen, K., Sullivan, S. T. & Hudson, E. R. Neutral gas sympathetic cooling of an ion in a Paul trap. Phys. Rev. Lett. 112, 143009 (2014).

    ADS 

    Google Scholar
     

  • 39.

    Höltkemeier, B., Weckesser, P., López-Carrera, H. & Weidemüller, M. Buffer-gas cooling of a single ion in a multipole radio frequency trap beyond the critical mass ratio. Phys. Rev. Lett. 116, 233003 (2016).

    ADS 

    Google Scholar
     

  • 40.

    Rouse, I. & Willitsch, S. Superstatistical energy distributions of an ion in an ultracold buffer gas. Phys. Rev. Lett. 118, 143401 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 41.

    Lambrecht, A. et al. Long lifetimes and effective isolation of ions in optical and electrostatic traps. Nat. Photon. 11, 704–707 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • 42.

    Schmidt, J. et al. Optical trapping of ion Coulomb crystals. Phys. Rev. X 8, 021028 (2018).

    CAS 

    Google Scholar
     

  • 43.

    Weckesser, P. et al. Trapping, shaping, and isolating of an ion Coulomb crystal via state-selective optical potentials. Phys. Rev. A 103, 013112 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • 44.

    Schmidt, J., Weckesser, P., Thielemann, F., Schaetz, T. & Karpa, L. Optical traps for sympathetic cooling of ions with ultracold neutral atoms. Phys. Rev. Lett. 124, 053402 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 45.

    Schneider, C., Enderlein, M., Huber, T., Dürr, S. & Schaetz, T. Influence of static electric fields on an optical ion trap. Phys. Rev. A 85, 013422 (2012).

    ADS 

    Google Scholar
     

  • 46.

    Ticknor, C., Regal, C., Jin, D. & Bohn, J. Multiplet structure of Feshbach resonances in nonzero partial waves. Phys. Rev. A 69, 042712 (2004).

    ADS 

    Google Scholar
     

  • 47.

    Cui, Y. et al. Observation of broad d-wave Feshbach resonances with a triplet structure. Phys. Rev. Lett. 119, 203402 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 48.

    Maier, T. et al. Emergence of chaotic scattering in ultracold Er and Dy. Phys. Rev. X 5, 041029 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 49.

    Köhler, T., Góral, K. & Julienne, P. Production of cold molecules via magnetically tunable Feshbach resonances. Rev. Mod. Phys. 78, 1311 (2006).

    ADS 

    Google Scholar
     

  • 50.

    Wester, R. Radiofrequency multipole traps: tools for spectroscopy and dynamics of cold molecular ions. J. Phys. B 42, 154001 (2009).

    ADS 

    Google Scholar
     

  • 51.

    Jochim, S. et al. Magnetic field control of elastic scattering in a cold gas of fermionic lithium atoms. Phys. Rev. Lett. 89, 273202 (2002).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 52.

    Luo, L. et al. Evaporative cooling of unitary Fermi gas mixtures in optical traps. New J. Phys. 8, 213 (2006).

    ADS 

    Google Scholar
     

  • 53.

    Ketterle, W. & Martin W. Z. Making, probing and understanding ultracold Fermi gases. La Rivista del Nuovo Cimento 31, 247–422 (2008).

  • 54.

    Grimm, R., Weidemüller, M. & Ovchinnikov, Y. in Advances in Atomic, Molecular, and Optical Physics (eds Bederson, B. & Walther, H.) Vol. 42, 95–170 (Elsevier, 2000).

  • 55.

    Karpa, L. Trapping Single Ions and Coulomb Crystals with Light Fields (Springer, 2019).

  • 56.

    Maxwell, J. A Treatise on Electricity and Magnetism Vol. 1 (Clarendon, 1873).

  • 57.

    Krükow, A. et al. Energy scaling of cold atom–atom–ion three-body recombination. Phys. Rev. Lett. 116, 193201 (2016).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 58.

    Pérez-Ros, J. & Greene, C. H. Universal temperature dependence of the ion–neutral–neutral three-body recombination rate. Phys. Rev. A 98, 062707 (2018).

    ADS 

    Google Scholar
     

  • 59.

    Pérez-Ros, J. & Greene, C. Communication: Classical threshold law for ion–neutral–neutral three-body recombination. J. Chem. Phys. 143, 041105 (2015).

    ADS 

    Google Scholar
     

  • 60.

    Mohammadi, A. et al. Life and death of a cold BaRb+ molecule inside an ultracold cloud of Rb atoms. Phys. Rev. Res. 3, 013196 (2021).

    CAS 

    Google Scholar
     

  • 61.

    Breit, G. & Rabi, I. Measurement of nuclear spin. Phys. Rev. 38, 2082–2083 (1931).

    ADS 
    CAS 

    Google Scholar
     

  • 62.

    Zhang, J. et al. P-wave Feshbach resonances of ultracold 6Li. Phys. Rev. A 70, 030702 (2004).

    ADS 

    Google Scholar
     

  • 63.

    Mies, F., Williams, C., Julienne, P. & Krauss, M. Estimating bounds on collisional relaxation rates of spin-polarized 87Rb atoms at ultracold temperatures. J. Res. Natl Inst. Stand. Technol. 101, 521–535 (1996).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 64.

    Tscherbul, T., Brumer, P. & Buchachenko, A. Spin–orbit interactions and quantum spin dynamics in cold ion–atom collisions. Phys. Rev. Lett. 117, 143201 (2016).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 65.

    Wille, E. et al. Exploring an ultracold Fermi–Fermi mixture: interspecies Feshbach resonances and scattering properties of 6Li and 40K. Phys. Rev. Lett. 100, 053201 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 66.

    Tiecke, T., Goosen, M., Walraven, J. & Kokkelmans, S. Asymptotic-bound-state model for Feshbach resonances. Phys. Rev. A 82, 042712 (2010).

    ADS 

    Google Scholar
     

  • 67.

    Werner, H.-J., Knowles, P. J., Knizia, G., Manby, F. R. & Schütz, M. Molpro: a general-purpose quantum chemistry program package. WIRES Comput. Mol. Sci. 2, 242–253 (2012).

    CAS 

    Google Scholar
     

  • 68.

    Goerz, M. H., Reich, D. M., Tomza, M. & Koch, C. QDYN, version 1.0, a program package for quantum dynamics and control (2015); https://qdyn-library.net

  • Source link