May 7, 2024
Observation of ultracold atomic bubbles in orbital microgravity – Nature

Observation of ultracold atomic bubbles in orbital microgravity – Nature

  • Hadzibabic, Z., Kruger, P., Cheneau, M., Battelier, B. & Dalibard, J. Berezinskii–Kosterlitz–Thouless crossover in a trapped atomic gas. Nature 441, 1118–1121 (2006).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cladé, P., Ryu, C., Ramanathan, A., Helmerson, K. & Phillips, W. D. Observation of a 2D Bose gas: from thermal to quasicondensate to superfluid. Phys. Rev. Lett. 102, 170401 (2009).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Kinoshita, T., Wenger, T. & Weiss, D. S. Observation of a one-dimensional Tonks–Girardeau gas. Science 305, 1125–1128 (2004).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Paredes, B. et al. Tonks–Girardeau gas of ultracold atoms in an optical lattice. Nature 429, 277–281 (2004).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Eckel, S. et al. Hysteresis in a quantized superfluid ‘atomtronic’ circuit. Nature 506, 200–203 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chin, C., Grimm, R., Julienne, P. & Tiesinga, E. Feshbach resonances in ultracold gases. Rev. Mod. Phys. 82, 1225–1286 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Tononi, A., Pelster, A. & Salasnich, L. Topological superfluid transition in bubble-trapped condensates. Phys. Rev. Res. 4, 013122 (2022).

    CAS 
    Article 

    Google Scholar
     

  • Tononi, A., Cinti, F. & Salasnich, L. Quantum bubbles in microgravity. Phys. Rev. Lett. 125, 010402 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tononi, A. & Salasnich, L. Bose–Einstein condensation on the surface of a sphere. Phys. Rev. Lett. 123, 160403 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Padavić, K., Sun, K., Lannert, C. & Vishveshwara, S. Vortex–antivortex physics in shell-shaped Bose–Einstein condensates. Phys. Rev. A 102, 043305 (2020).

    ADS 
    Article 

    Google Scholar
     

  • Sun, K., Padavić, K., Yang, F., Vishveshwara, S. & Lannert, C. Static and dynamic properties of shell-shaped condensates. Phys. Rev. A 98, 013609 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Padavić, K., Sun, K., Lannert, C. & Vishveshwara, S. Physics of hollow Bose–Einstein condensates. Europhys. Lett. 120, 20004 (2017).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Lannert, C., Wei, T. C. & Vishveshwara, S. Dynamics of condensate shells: collective modes and expansion. Phys. Rev. A 75, 013611 (2007).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Móller, N. S., Santos, F. E. Ad, Bagnato, V. S. & Pelster, A. Bose–Einstein condensation on curved manifolds. New J. Phys. 22, 063059 (2020).

    ADS 
    MathSciNet 
    Article 
    CAS 

    Google Scholar
     

  • Bereta, S. J., Caracanhas, M. A. & Fetter, A. L. Superfluid vortex dynamics on a spherical film. Phys. Rev. A 103, 053306 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Zhang, J. & Ho, T.-L. Potential scattering on a spherical surface. J. Phys. B 51, 115301 (2018).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Mitra, K., Williams, C.J, & Sá de Melo, C. A. R. Superfluid and Mott-insulating shells of bosons in harmonically confined optical lattices. Phys. Rev. A 77, 033607 (2008).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Banik, S. et al. Accurate determination of Hubble attenuation and amplification in expanding and contracting cold-atom universes. Phys. Rev. Lett.128, 090401 (2022).

  • Bhardwaj, A., Vaido, D. & Sheehy, D. E. Inflationary dynamics and particle production in a toroidal Bose–Einstein condensate. Phys. Rev. A 103, 023322 (2021).

    ADS 
    MathSciNet 
    CAS 
    Article 

    Google Scholar
     

  • Eckel, S., Kumar, A., Jacobson, T., Spielman, I. B. & Campbell, G. K. A rapidly expanding Bose-Einstein condensate: an expanding universe in the lab. Phys. Rev. X 8, 021021 (2018).

    CAS 

    Google Scholar
     

  • Aveline, D. C. et al. Observation of Bose–Einstein condensates in an Earth-orbiting research lab. Nature 582, 193–197 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zobay, O. & Garraway, B. M. Two-dimensional atom trapping in field-induced adiabatic potentials. Phys. Rev. Lett. 86, 1195–1198 (2001).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Elliott, E. R., Krutzik, M. C., Williams, J. R., Thompson, R. J. & Aveline, D. C. NASA’s Cold Atom Lab (CAL): system development and ground test status. npj Microgravity 4, 16 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lundblad, N. et al. Shell potentials for microgravity Bose–Einstein condensates. npj Microgravity 5, 30 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zobay, O. & Garraway, B. M. Properties of coherent matter-wave bubbles. Acta Phys. Slovaca 50, 359–368 (2000).


    Google Scholar
     

  • Zobay, O. & Garraway, B. Atom trapping and two-dimensional Bose–Einstein condensates in field-induced adiabatic potentials. Phys. Rev. A 69, 023605 (2004).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Perrin, H. & Garraway, B. M. Trapping atoms with radio frequency adiabatic potentials. Adv. At. Mol. Opt. Phys. 66, 181–262 (2017).

    ADS 
    Article 

    Google Scholar
     

  • Garraway, B. M. & Perrin, H. Recent developments in trapping and manipulation of atoms with adiabatic potentials. J. Phys. B 49, 172001 (2016).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • White, M., Gao, H., Pasienski, M. & DeMarco, B. Bose–Einstein condensates in rf-dressed adiabatic potentials. Phys. Rev. A 74, 023616 (2006).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Merloti, K. et al. A two-dimensional quantum gas in a magnetic trap. New J. Phys. 15, 033007 (2013).

    ADS 
    Article 

    Google Scholar
     

  • Colombe, Y. et al. Ultracold atoms confined in rf-induced two-dimensional trapping potentials. Europhys. Lett. 67, 593–599 (2004).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Shibata, K., Ikeda, H., Suzuki, R. & Hirano, T. Compensation of gravity on cold atoms by a linear optical potential. Phys. Rev. Res. 2, 013068 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Guo, Y. et al. An annular quantum gas induced by dimensional reduction on a shell. Preprint at https://arxiv.org/abs/2105.12981 (2021).

  • Meister, M., Roura, A., Rasel, E. M. & Schleich, W. P. The space atom laser: an isotropic source for ultra-cold atoms in microgravity. New J. Phys. 21, 013039 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Sackett, C. A., Lam, T. C., Stickney, J. C. & Burke, J. H. Extreme adiabatic expansion in micro-gravity: modeling for the Cold Atomic Laboratory. Microgravity Sci. Technol. 30, 155–163 (2017).

    ADS 
    Article 

    Google Scholar
     

  • Pollard, A. R., Moan, E. R., Sackett, C. A., Elliott, E. R. & Thompson, R. J. Quasi-adiabatic external state preparation of ultracold atoms in microgravity. Microgravity Sci. Technol. 32, 1175–1184 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Putra, A., Campbell, D. L., Price, R. M., De, S. & Spielman, I. B. Optimally focused cold atom systems obtained using density–density correlations. Rev. Sci. Instrum. 85, 013110 (2014).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Pinkse, P. W. H. et al. Adiabatically changing the phase-space density of a trapped Bose gas. Phys. Rev. Lett. 78, 990–993 (1997).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Morizot, O. et al. Influence of the radio-frequency source properties on RF-based atom traps. Eur. Phys. J. D 47, 209–214 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Rhyno, B., Lundblad, N., Aveline, D. C., Lannert, C. & Vishveshwara, S. Thermodynamics in expanding shell-shaped Bose–Einstein condensates. Phys. Rev. A 104, 063310 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Dziarmaga, J. Dynamics of a quantum phase transition and relaxation to a steady state. Adv. Phys. 59, 1063–1189 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Lin, Y.-J., Perry, A., Compton, R., Spielman, I. & Porto, J. Rapid production of 87Rb Bose-Einstein condensates in a combined magnetic and optical potential. Phys. Rev. A 79, 063631 (2009).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Stamper-Kurn, D. M. et al. Reversible formation of a Bose–Einstein condensate. Phys. Rev. Lett. 81, 2194–2197 (1998).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Weber, T., Herbig, J., Mark, M., Nagerl, H.-C. & Grimm, R. Bose–Einstein condensation of cesium. Science 299, 232–235 (2003).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Roberts, J. L. et al. Controlled collapse of a Bose–Einstein condensate. Phys. Rev. Lett. 86, 4211–4214 (2001).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sinuco-Leon, G. A. et al. Microwave spectroscopy of radio-frequency-dressed Rb87. Phys. Rev. A 100, 053416 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Fancher, C. T., Pyle, A. J., Rotunno, A. P. & Aubin, S. Microwave ac Zeeman force for ultracold atoms. Phys. Rev. A 97, 043430 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Frye, K. et al. The Bose–Einstein Condensate and Cold Atom Laboratory. EPJ Quantum Technol. 8, 1 (2021).

    Article 

    Google Scholar
     

  • Alzar, C. G., Perrin, H., Garraway, B. & Lorent, V. Evaporative cooling in a radio-frequency trap. Phys. Rev. A 74, 053413 (2006).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Caracanhas, M. A., Massignan, P. & Fetter, A. L. Superfluid vortex dynamics on an ellipsoid and other surfaces of revolution. Phys. Rev. A 105, 023307 (2022).

    ADS 
    MathSciNet 
    CAS 
    Article 

    Google Scholar
     

  • Luksch, K. et al. Probing multiple-frequency atom–photon interactions with ultracold atoms. New J. Phys. 21, 073067 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Harte, T. L. et al. Ultracold atoms in multiple radio-frequency dressed adiabatic potentials. Phys. Rev. A 97, 013616 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Wolf, A. et al. Shell-shaped Bose–Einstein condensates realized with dual-species mixtures. Preprint at https://arxiv.org/abs/2110.15247 (2021).

  • Andriati, A., Brito, L., Tomio, L. & Gammal, A. Stability of a Bose-condensed mixture on a bubble trap. Phys. Rev. A 104, 033318 (2021).

    ADS 
    MathSciNet 
    CAS 
    Article 

    Google Scholar
     

  • Lachmann, M. D. et al. Ultracold atom interferometry in space. Nat. Commun. 12, 1317 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Pethick, C. J. & Smith, H. Bose–Einstein Condensation in Dilute Gases (Cambridge Univ. Press, 2008).

  • Pitaevskii, L. & Stringari, S. Bose–Einstein Condensation and Superfluidity (Oxford Univ. Press, 2016).

  • Bagnato, V., Pritchard, D. E. & Kleppner, D. Bose–Einstein condensation in an external potential. Phys. Rev. A 35, 4354–4358 (1987).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Houbiers, M., Stoof, H. T. C. & Cornell, E. A. Critical temperature of a trapped Bose gas: mean-field theory and fluctuations. Phys. Rev. A 56, 2041–2045 (1997).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Burrows, K. A., Perrin, H. & Garraway, B. M. Nonadiabatic losses from radio-frequency-dressed cold-atom traps: beyond the Landau–Zener model. Phys. Rev. A 96, 023429 (2017).

    ADS 
    Article 

    Google Scholar
     

  • Source link