May 4, 2024
One-dimensional proximity superconductivity in the quantum Hall regime – Nature

One-dimensional proximity superconductivity in the quantum Hall regime – Nature

  • Eroms, J., Weiss, D., De Boeck, J., Borghs, G. & Zülicke, U. Andreev reflection at high magnetic fields: evidence for electron and hole transport in edge states. Phys. Rev. Lett. 95, 107001 (2005).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Amet, F. et al. Supercurrent in the quantum Hall regime. Science 352, 966–969 (2016).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, G.-H. et al. Inducing superconducting correlation in quantum Hall edge states. Nat. Phys. 13, 693–698 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Sahu, M. R. et al. Inter-Landau-level Andreev reflection at the Dirac point in a graphene quantum Hall state coupled to a NbSe2 superconductor. Phys. Rev. Lett. 121, 086809 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, L. et al. Interference of chiral Andreev edge states. Nat. Phys. 16, 862–867 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Vignaud, H. et al. Evidence for chiral supercurrent in quantum Hall Josephson junctions. Nature 624, 545–550 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bretheau, L. et al. Exciting Andreev pairs in a superconducting atomic contact. Nature 499, 312–315 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Alicea, J. New directions in the pursuit of Majorana fermions in solid state systems. Rep. Prog. Phys. 75, 076501 (2012).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Lutchyn, R. M. et al. Majorana zero modes in superconductor–semiconductor heterostructures. Nat. Rev. Mater. 3, 52–68 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bezryadin, A., Lau, C. N. & Tinkham, M. Quantum suppression of superconductivity in ultrathin nanowires. Nature 404, 971–974 (2000).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mooij, J. E. & Nazarov, Y. V. Superconducting nanowires as quantum phase-slip junctions. Nat. Phys. 2, 169–172 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Astafiev, O. V. et al. Coherent quantum phase slip. Nature 484, 355–358 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Shaikhaidarov, R. S. et al. Quantized current steps due to the ac coherent quantum phase-slip effect. Nature 608, 45–49 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, S. et al. Topologically protected helical states in minimally twisted bilayer graphene. Phys. Rev. Lett. 121, 037702 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yoo, H. et al. Atomic and electronic reconstruction at the van der Waals interface in twisted bilayer graphene. Nat. Mater. 18, 448–453 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • San-Jose, P. & Prada, E. Helical networks in twisted bilayer graphene under interlayer bias. Phys. Rev. B 88, 121408 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Ju, L. et al. Topological valley transport at bilayer graphene domain walls. Nature 520, 650–655 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Alden, J. S. et al. Strain solitons and topological defects in bilayer graphene. Proc. Natl Acad. Sci. USA 110, 11256–11260 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lau, C. N., Markovic, N., Bockrath, M., Bezryadin, A. & Tinkham, M. Quantum phase slips in superconducting nanowires. Phys. Rev. Lett. 87, 217003 (2001).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ben Shalom, M. et al. Quantum oscillations of the critical current and high-field superconducting proximity in ballistic graphene. Nat. Phys. 12, 318–322 (2016).

    Article 

    Google Scholar
     

  • Wei, M. T. et al. Chiral quasiparticle tunneling between quantum Hall edges in proximity with a superconductor. Phys. Rev. B 100, 121403 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Seredinski, A. et al. Quantum Hall–based superconducting interference device. Sci. Adv. 5, eaaw8693 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seredinski, A. et al. Supercurrent in graphene Josephson junctions with narrow trenches in the quantum Hall regime. MRS Adv. 3, 2855–2864 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Indolese, D. I. et al. Compact SQUID realized in a double-layer graphene heterostructure. Nano Lett. 20, 7129–7135 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Calado, V. E. et al. Ballistic Josephson junctions in edge-contacted graphene. Nat. Nanotech. 10, 761–764 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Efimkin, D. K. & MacDonald, A. H. Helical network model for twisted bilayer graphene. Phys. Rev. B 98, 035404 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Rickhaus, P. et al. Transport through a network of topological channels in twisted bilayer graphene. Nano Lett. 18, 6725–6730 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, S. G. et al. Giant oscillations in a triangular network of one-dimensional states in marginally twisted graphene. Nat. Commun. 10, 4008 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Enaldiev, V. V., Moulsdale, C., Geim, A. K. & Fal’ko, V. I. Non-chiral one-dimensional sates propagating inside AB/BA domain walls in bilayer graphene. Preprint at arxiv.org/abs/2307.14293 (2023).

  • Geisenhof, F. R. et al. Interplay between topological valley and quantum Hall edge transport. Nat. Commun. 13, 4187 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Borzenets, I. V. et al. Ballistic graphene Josephson junctions from the short to the long junction regimes. Phys. Rev. Lett. 117, 237002 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bardeen, J. & Johnson, J. L. Josephson current flow in pure superconducting-normal-superconducting junctions. Phys. Rev. B 5, 72 (1972).

    Article 
    ADS 

    Google Scholar
     

  • Kurilovich, V. D. & Glazman, L. I. Criticality in the crossed Andreev reflection of a quantum Hall edge. Phys. Rev. X 13, 031027 (2023).

    CAS 

    Google Scholar
     

  • Li, C. et al. Magnetic field resistant quantum interferences in Josephson junctions based on bismuth nanowires. Phys. Rev. B 90, 245427 (2014).

  • Murani, A. et al. Ballistic edge states in Bismuth nanowires revealed by SQUID interferometry. Nat. Commun. 8, 15941 (2017).

  • Saito, Y., Ge, J., Watanabe, K., Taniguchi, T. & Young, A. F. Independent superconductors and correlated insulators in twisted bilayer graphene. Nat. Phys. 16, 926–930 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Stepanov, P. et al. Untying the insulating and superconducting orders in magic-angle graphene. Nature 583, 375–378 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lane, T. L. M. et al. Ballistic electron channels including weakly protected topological states in delaminated bilayer graphene. Phys. Rev. B 97, 045301 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • McGilly, L. J. et al. Visualization of moiré superlattices. Nat. Nanotechnol. 15, 580–584 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hesp, N. C. H. et al. Nano-imaging photoresponse in a moiré unit cell of minimally twisted bilayer graphene. Nat. Commun. 12, 1640 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luo, Y. et al. In situ nanoscale imaging of moiré superlattices in twisted van der Waals heterostructures. Nat. Commun. 11, 4209 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sunku, S. S. et al. Photonic crystals for nano-light in moiré graphene superlattices. Science 362, 1153–1156 (2018).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Williams, J. R., Abanin, D. A., DiCarlo, L., Levitov, L. S. & Marcus, C. M. Quantum Hall conductance of two-terminal graphene devices. Phys. Rev. B 80, 045408 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Feldman, B. E., Martin, J. & Yacoby, A. Broken-symmetry states and divergent resistance in suspended bilayer graphene. Nat. Phys. 5, 889–893 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Khaymovich, I. M., Chtchelkatchev, N. M., Shereshevskii, I. A. & Mel’nikov, A. S. Andreev transport in two-dimensional normal-superconducting systems in strong magnetic fields. Europhys. Lett. 91, 17005 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Ma, M. & Zyuzin, A. Y. Josephson effect in the quantum Hall regime. Europhys. Lett. 21, 941 (1993).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gamayun, O., Hutasoit, J. A. & Cheianov, V. V. Two-terminal transport along a proximity-induced superconducting quantum Hall edge. Phys. Rev. B 96, 241104 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Tinkham, M. Introduction to Superconductivity 2nd edn (McGraw-Hill Book Co, 1996).

  • Golubov, A. A., Kupriyanov, M. Y. & Il’Ichev, E. The current-phase relation in Josephson junctions. Rev. Mod. Phys. 76, 411 (2004).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Shapiro, S. Josephson currents in superconducting tunneling: the effect of microwaves and other observations. Phys. Rev. Lett. 11, 80 (1963).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Russer, P. Influence of microwave radiation on current–voltage characteristic of superconducting weak links. J. Appl. Phys. 43, 2008–2010 (1972).

    Article 
    ADS 

    Google Scholar
     

  • Barrier, J. Replication data for: One-dimensional proximity superconductivity in the quantum Hall regime. Zenodo https://doi.org/10.5281/zenodo.10698874 (2024).

  • Source link