April 26, 2024
Operando studies reveal active Cu nanograins for CO2 electroreduction – Nature

Operando studies reveal active Cu nanograins for CO2 electroreduction – Nature

  • Ross, M. B. et al. Designing materials for electrochemical carbon dioxide recycling. Nat. Catal. 2, 648–658 (2019).

    CAS 

    Google Scholar
     

  • Birdja, Y. Y. et al. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat. Energy 4, 732–745 (2017).

    ADS 

    Google Scholar
     

  • Yang, Y. et al. Operando methods in electrocatalysis. ACS Catal. 11, 1136–1178 (2021).

    CAS 

    Google Scholar
     

  • Mefford, J. T. et al. Correlative operando microscopy of oxygen evolution electrocatalysts. Nature 593, 67–73 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Vavra, J., Shen, T. H., Stoian, D., Tileli, V. & Buonsanti, R. Real-time monitoring reveals dissolution/redeposition mechanism in copper nanocatalysts during the initial stages of the CO2 reduction reaction. Angew. Chem. Int. Ed. Engl. 60, 1347–1354 (2021).

    CAS 

    Google Scholar
     

  • Hahn, C. et al. Engineering Cu surfaces for the electrocatalytic conversion of CO2: controlling selectivity toward oxygenates and hydrocarbons. Proc. Natl Acad. Sci. USA 114, 5918–5923 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • Li, C. W., Ciston, J. & Kanan, M. W. Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper. Nature 508, 504–507 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • Arán-Ais, R. M., Scholten, F., Kunze, S., Rizo, R. & Roldan Cuenya, B. The role of in situ generated morphological motifs and Cu(i) species in C2+ product selectivity during CO2 pulsed electroreduction. Nat. Energy 5, 317–325 (2020).

    ADS 

    Google Scholar
     

  • Eilert, A. et al. Subsurface oxygen in oxide-derived copper electrocatalysts for carbon dioxide reduction. J. Phys. Chem. Lett. 8, 285–290 (2017).

    CAS 

    Google Scholar
     

  • Chang, C.-J. et al. Dynamic reoxidation/reduction-driven atomic interdiffusion for highly selective CO2 reduction toward methane. J. Am. Chem. Soc. 142, 12119–12132 (2020).

    CAS 

    Google Scholar
     

  • Kimura, K. W. et al. Selective electrochemical CO2 reduction during pulsed potential stems from dynamic interface. ACS Catal. 10, 8632–8639 (2020).

    CAS 

    Google Scholar
     

  • Li, J. et al. Copper adparticle enabled selective electrosynthesis of n-propanol. Nat. Commun. 9, 4614 (2018).

    ADS 

    Google Scholar
     

  • Lum, Y. & Ager, J. W. Stability of residual oxides in oxide‐derived copper catalysts for electrochemical CO2 reduction investigated with 18O labeling. Angew. Chem. Int. Ed. Engl. 57, 551–554 (2018).

    CAS 

    Google Scholar
     

  • Fields, M., Hong, X., Nørskov, J. K. & Chan, K. Role of subsurface oxygen on Cu surfaces for CO2 electrochemical reduction. J. Phys. Chem. C 122, 16209–16215 (2018).

    CAS 

    Google Scholar
     

  • Garza, A. J., Bell, A. T. & Head-Gordon, M. Is subsurface oxygen necessary for the electrochemical reduction of CO2 on copper? J. Phys. Chem. Lett. 9, 601–606 (2018).

    CAS 

    Google Scholar
     

  • Feng, X., Jiang, K., Fan, S. & Kanan, M. W. A direct grain-boundary-activity correlation for CO electroreduction on Cu nanoparticles. ACS Cent. Sci. 2, 169–174 (2016).

    CAS 

    Google Scholar
     

  • Mariano, R. G., McKelvey, K., White, H. S. & Kanan, M. W. Selective increase in CO2 electroreduction activity at grain-boundary surface terminations. Science 358, 1187–1192 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • Mariano, R. G. et al. Microstructural origin of locally enhanced CO2 electroreduction activity on gold. Nat. Mater. 20, 1000–1006 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Yang, Y. et al. Electrocatalysis in alkaline media and alkaline membrane-based energy technologies. Chem. Rev. 122, 6117–6321 (2022).

    CAS 

    Google Scholar
     

  • Hung, L., Tsung, C.-K., Huang, W. & Yang, P. Room-temperature formation of hollow Cu2O nanoparticles. Adv. Mater. 22, 1910–1914 (2010).

    CAS 

    Google Scholar
     

  • Kim, D., Kley, C. S., Li, Y. & Yang, P. Copper nanoparticle ensembles for selective electroreduction of CO2 to C2–C3 products. Proc. Natl Acad. Sci. USA 114, 10560–10565 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • Li, Y. et al. Electrochemically scrambled nanocrystals are catalytically active for CO2-tomulticarbons. Proc. Natl Acad. Sci. USA 117, 9194–9201 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Holtz, M. E. et al. Nanoscale imaging of lithium ion distribution during in situ operation of battery electrode and electrolyte. Nano Lett. 14, 1453–1459 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • Yang, Y., Shao, Y.-T., Lu, X., Abruña, H. D. & Muller, D. A. Metal monolayers on command: underpotential deposition at nanocrystal surfaces: a quantitative operando electrochemical transmission electron microscopy study. ACS Energy Lett. 7, 1292–1297 (2022).

    CAS 

    Google Scholar
     

  • Williamson, M., Tromp, R., Vereecken, P., Hull, R. & Ross, F. Dynamic microscopy of nanoscale cluster growth at the solid–liquid interface. Nat. Mater. 2, 532–536 (2003).

    ADS 
    CAS 

    Google Scholar
     

  • Holtz, M. E., Yu, Y., Gao, J., Abruña, H. D. & Muller, D. A. In situ electron energy-loss spectroscopy in liquids. Microsc. Microanal. 19, 1027–1035 (2013).

    ADS 
    CAS 

    Google Scholar
     

  • Yang, Y., Shao, Y.-T., Lu, X., Abruña, H. D. & Muller, D. A. Elucidating cathodic corrosion mechanisms with operando electrochemical transmission electron microscopy. J. Am. Chem. Soc. 144, 15698–15708 (2022).

    CAS 

    Google Scholar
     

  • Serra-Maia, R. et al. Nanoscale chemical and structural analysis during in situ scanning/transmission electron microscopy in liquids. ACS Nano 15, 10228–10240 (2021).

    CAS 

    Google Scholar
     

  • Chen, Z. et al. Electron ptychorgraphy achieves atomic-resolution limits set by lattice vibrations. Science 372, 826–831 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Tate, M. W. et al. High dynamic range pixel array detector for scanning transmission electron microscopy. Microsc. Microanal. 22, 237–249 (2016).

    ADS 
    CAS 

    Google Scholar
     

  • Ophus, C. Four-dimensional scanning transmission electron microscopy (4D-STEM): from scanning nanodiffraction to ptychography and beyond. Micro. Microanal. 25, 563–582 (2020).

    ADS 

    Google Scholar
     

  • Zuo, J. M. & Tao, J. in Scanning Transmission Electron Microscopy (eds Pennycook, S. & Nellist, P.) Ch. 9 (Springer, 2011).

  • Yu, S. et al. Nanoparticle assembly induced ligand interactions for enhanced electrocatalytic CO2 conversion. J. Am. Chem. Soc. 143, 19919–19927 (2021).

    CAS 

    Google Scholar
     

  • Yang, Y. et al. Operando resonant soft X-ray scattering studies of chemical environment and interparticle dynamics of Cu nanocatalysts for CO2 electroreduction. J. Am. Chem. Soc. 144, 8927–8931 (2022).

    CAS 

    Google Scholar
     

  • Glatzel, P. & Bergmann, U. High resolution 1s core hole X-ray spectroscopy in 3D transition metal complexes-electronic and structural information. Coord. Chem. Rev. 249, 65–95 (2005).

    CAS 

    Google Scholar
     

  • Yang, Y. et al. In situ X-ray absorption spectroscopy of a synergistic Co-Mn oxide catalyst for the oxygen reduction reaction. J. Am. Chem. Soc. 141, 1463–1466 (2019).

    CAS 

    Google Scholar
     

  • Reske, R., Mistry, H., Behafarid, F., Roldan Cuenya, B. & Strasser, P. Particle size effects in the catalytic electroreduction of CO2 on Cu nanoparticles. J. Am. Chem. Soc. 136, 6978–6986 (2018).


    Google Scholar
     

  • Zeng, R. et al. Methanol oxidation using ternary ordered intermetallic electrocatalysts: a DEMS study. ACS Catal. 10, 770–776 (2020).

    CAS 

    Google Scholar
     

  • Cao, L. et al. Mechanistic insights for low-overpotential electroreduction of CO2 to CO on copper nanowires. ACS Catal. 7, 8578–8587 (2017).

    CAS 

    Google Scholar
     

  • Jeong, H. M. et al. Atomic-scale spacing between copper facets for the electrochemical reduction of carbon dioxide. Adv. Energy Mater. 10, 1903423 (2020).

    CAS 

    Google Scholar
     

  • Mantella, V. et al. Polymer lamellae as reaction intermediates in the formation of copper nanospheres as evidenced by in situ X-ray studies. Angew. Int. Chem. Ed. Engl. 59, 11627–11633 (2020).

    CAS 

    Google Scholar
     

  • Kim, D. et al. Selective CO2 electrocatalysis at the pseudocapacitive nanoparticle/ordered-ligand interlayer. Nat. Energy 5, 1032–1042 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Sebastián-Pascual, P. & Escudero-Escribano, M. Surface characterization of copper electrocatalysts by lead underpotential deposition. J. Electroanal. Chem. 896, 115446 (2021).


    Google Scholar
     

  • Förster, S., Apostol, L. & Bras, W. Scatter: software for the analysis of nano- and mesoscale small-angle scattering. J. Appl. Crystallogr. 43, 639–646 (2010).


    Google Scholar
     

  • Source link