May 8, 2024
Origin of life-forming volatile elements in the inner Solar System – Nature

Origin of life-forming volatile elements in the inner Solar System – Nature

  • Adams, F. C. The birth environment of the Solar System. Annu. Rev. Astron. Astrophys. 48, 47–85 (2010). This paper reviews and discusses the working scenarios for star-forming environments and their implications regarding star and planet formation.

    ADS 
    CAS 

    Google Scholar
     

  • Turner, N. J. et al. in Protostars and Planets VI (eds Beuther, H. et al.) 411–432 (Univ. Arizona Press, 2014).

  • Hayashi, C. Structure of the solar nebula, growth and decay of magnetic fields and effects of magnetic and turbulent viscosities on the nebula. Prog. Theor. Phys. Suppl. 70, 35–53 (1981).

    ADS 

    Google Scholar
     

  • Grossman, L. & Larimer, J. W. Early chemical history of the Solar System. Rev. Geophys. 12, 71–101 (1974). This study established the thermodynamics of Solar System formation by condensation of a hot nebular gas.

    ADS 
    CAS 

    Google Scholar
     

  • Albarède, F. Volatile accretion history of the terrestrial planets and dynamic implications. Nature 461, 1227–1233 (2009).

    ADS 
    PubMed 

    Google Scholar
     

  • Alexander, C. M. O. D. et al. The provenances of asteroids, and their contributions to the volatile inventories of the terrestrial planets. Science 337, 721–723 (2012). This paper uses bulk hydrogen and nitrogen isotopic compositions of CI chondrites to suggest that they were the principal source of Earth’s volatiles.

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Marty, B. The origins and concentrations of water, carbon, nitrogen and noble gases on Earth. Earth Planet. Sci. Lett. 313–314, 56–66 (2012).

    ADS 

    Google Scholar
     

  • Halliday, A. N. The origins of volatiles in the terrestrial planets. Geochim. Cosmochim. Acta 105, 146–171 (2013).

    ADS 
    CAS 

    Google Scholar
     

  • Dauphas, N. & Morbidelli, A. in Treatise on Geochemistry 2nd edn (eds Holland, H. D. & Turekian, K. K.) 1–35 (Elsevier, 2014).

  • Bergin, E. A., Blake, G. A., Ciesla, F., Hirschmann, M. M. & Li, J. Tracing the ingredients for a habitable Earth from interstellar space through planet formation. Proc. Natl Acad. Sci. USA 112, 8965–8970 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ciesla, F. J., Lauretta, D. S., Cohen, B. A. & Hood, L. L. A nebular origin for chondritic fine-grained phyllosilicates. Science 299, 549–552 (2003).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ku, Y. & Jacobsen, S. B. Potassium isotope anomalies in meteorites inherited from the protosolar molecular cloud. Sci. Adv. 6, eabd0511 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yokoyama, T., Nagai, Y., Fukai, R. & Hirata, T. Origin and evolution of distinct molybdenum isotopic variabilities within carbonaceous and noncarbonaceous reservoirs. Astrophys. J. 883, 62 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Terzieva, R. & Herbst, E. The possibility of nitrogen isotopic fractionation in interstellar clouds. Mon. Not. R. Astron. Soc. 317, 563–568 (2000).

    ADS 
    CAS 

    Google Scholar
     

  • Aikawa, Y., Furuya, K., Hincelin, U. & Herbst, E. Multiple paths of deuterium fractionation in protoplanetary disks. Astrophys. J. 855, 119 (2018).

    ADS 

    Google Scholar
     

  • Sandford, S. A., Berstein, M. P. & Dworkin, J. P. Assessment of the interstellar processes leading to deuterium enrichment in meteoritic organics. Meteorit. Planet. Sci. 36, 1117–1133 (2001).

    ADS 
    CAS 

    Google Scholar
     

  • Cleeves, L. I. et al. The ancient heritage of water ice in the Solar System. Science 345, 1590–1593 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Rodgers, S. D. & Charnley, S. B. Nitrogen superfractionation in dense cloud cores. Mon. Not. R. Astron. Soc. 385, L48–L52 (2008).

    ADS 

    Google Scholar
     

  • Pignatale, F. C., Charnoz, S., Chaussidon, M. & Jacquet, E. Making the planetary material diversity during the early assembling of the Solar System. Astrophys. J. 867, L23 (2018).

    ADS 

    Google Scholar
     

  • Lodders, K. Solar system abundances and condensation temperatures of the elements. Astrophys. J. 591, 1220–1247 (2003). This paper summarizes and selects the best currently available solar photospheric and meteoritic CI chondrite abundances for all elements.

    ADS 
    CAS 

    Google Scholar
     

  • Chakraborty, S., Ahmed, M., Jackson, T. L. & Thiemens, M. H. Experimental test of self-shielding in vacuum ultraviolet photodissociation of CO. Science 321, 1328–1331 (2008).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bally, J. & Langer, W. D. Isotope-selective photodestruction of carbon monoxide. Astrophys. J. 255, 143 (1982).

    ADS 
    CAS 

    Google Scholar
     

  • Yurimoto, H. & Kuramoto, K. Molecular cloud origin for the oxygen isotope heterogeneity in the Solar System. Science 305, 1763–1766 (2004). This paper reports self-shielding in molecular clouds as a cause of mass-independent isotope fractionation of oxygen.

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lyons, J. R. & Young, E. D. CO self-shielding as the origin of oxygen isotope anomalies in the early solar nebula. Nature 435, 317–320 (2005).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Alexander, C. M. O. D., Cody, G. D., De Gregorio, B. T., Nittler, L. R. & Stroud, R. M. The nature, origin and modification of insoluble organic matter in chondrites, the major source of Earth’s C and N. Chem. Erde 77, 227–256 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tartèse, R., Chaussidon, M., Gurenko, A., Delarue, F. & Robert, F. Insights into the origin of carbonaceous chondrite organics from their triple oxygen isotope composition. Proc. Natl Acad. Sci. USA 115, 8535–8540 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kuga, M., Cernogora, G., Marrocchi, Y., Tissandier, L. & Marty, B. Processes of noble gas elemental and isotopic fractionations in plasma-produced organic solids: cosmochemical implications. Geochim. Cosmochim. Acta 217, 219–230 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • Bekaert, D. V., Marrocchi, Y., Meshik, A., Remusat, L. & Marty, B. Primordial heavy noble gases in the pristine Paris carbonaceous chondrite. Meteorit. Planet. Sci. 54, 395–414 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Robert, F. et al. Hydrogen isotope fractionation in methane plasma. Proc. Natl Acad. Sci. USA 114, 870–874 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Laurent, B. et al. The deuterium/hydrogen distribution in chondritic organic matter attests to early ionizing irradiation. Nat. Commun. 6, 8567 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Füri, E., Chaussidon, M. & Marty, B. Evidence for an early nitrogen isotopic evolution in the solar nebula from volatile analyses of a CAI from the CV3 chondrite NWA 8616. Geochim. Cosmochim. Acta 153, 183–201 (2015).

  • Grewal, D. S., Dasgupta, R. & Marty, B. A very early origin of isotopically distinct nitrogen in inner Solar System protoplanets. Nat. Astron. 5, 356–364 (2021).

    ADS 

    Google Scholar
     

  • Heays, A. N. et al. Isotope selective photodissociation of N2 by the interstellar radiation field and cosmic rays. Astron. Astrophys. 562, A61 (2014).


    Google Scholar
     

  • Garani, J. & Lyons, J. R. Modeling nitrogen isotope chemistry in the solar nebula. In Lunar and Planetary Conference 2540 (LPI, 2020).

  • Muskatel, B. H., Remacle, F., Thiemens, M. H. & Levine, R. D. On the strong and selective isotope effect in the UV excitation of N2 with implications toward the nebula and Martian atmosphere. Proc. Natl Acad. Sci. USA 108, 6020–6025 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chakraborty, S. et al. Massive isotopic effect in vacuum UV photodissociation of N2 and implications for meteorite data. Proc. Natl Acad. Sci. USA 111, 14704–14709 (2014). This paper reports laboratory experiments that reproduce the large nitrogen isotope fractionation during irradiation.

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Briani, G. et al. Pristine extraterrestrial material with unprecedented nitrogen isotopic variation. Proc. Natl Acad. Sci. USA 106, 10522–10527 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Busemann, H. Interstellar chemistry recorded in organic matter from primitive meteorites. Science 312, 727–730 (2006).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lyons, J. R., Gharib-Nezhad, E. & Ayres, T. R. A light carbon isotope composition for the Sun. Nat. Commun. 9, 908 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meijerink, R., Pontoppidan, K. M., Blake, G. A., Poelman, D. R. & Dullemond, C. P. Radiative transfer models of mid-infrared H2O lines in the planet-forming region of circumstellar disks. Astrophys. J. 704, 1471–1481 (2009).

    ADS 
    CAS 

    Google Scholar
     

  • Krijt, S., Ciesla, F. J. & Bergin, E. A. Tracing water vapor and ice during dust growth. Astrophys. J. 833, 285 (2016).

    ADS 

    Google Scholar
     

  • Nakano, H., Kouchi, A., Tachibana, S. & Tsuchiyama, A. Evaporation of interstellar organic materials in the solar nebula. Astrophys. J. 592, 1252–1262 (2003).

    ADS 
    CAS 

    Google Scholar
     

  • Lodders, K. Jupiter formed with more tar than ice. Astrophys. J. 611, 587–597 (2004).

    ADS 
    CAS 

    Google Scholar
     

  • Righter, K., Sutton, S. R., Danielson, L., Pando, K. & Newville, M. Redox variations in the inner Solar System with new constraints from vanadium XANES in spinels. Am. Mineral. 101, 1928–1942 (2016).

    ADS 

    Google Scholar
     

  • Bermingham, K. R., Füri, E., Lodders, K. & Marty, B. The NC–CC isotope dichotomy: implications for the chemical and isotopic evolution of the early Solar System. Space Sci. Rev. 216, 133 (2020).

  • Nakano, H. et al. Precometary organic matter: a hidden reservoir of water inside the snow line. Sci. Rep. 10, 7755 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dullemond, C. P. & Dominik, C. The effect of dust settling on the appearance of protoplanetary disks. Astron. Astrophys. 421, 1075–1086 (2004).

    ADS 

    Google Scholar
     

  • Ciesla, F. J. Residence times of particles in diffusive protoplanetary disk environments. I. Vertical motions. Astrophys. J. 723, 514–529 (2010).

    ADS 

    Google Scholar
     

  • Charnoz, S., Fouchet, L., Aléon, J. & Moreira, M. Three-dimensional Lagragian turbulent diffusion of dust grains in a protoplanetary disk: methods and applications. Astrophys. J. 737, 33 (2011).

    ADS 

    Google Scholar
     

  • Birnstiel, T., Fang, M. & Johansen, A. Dust evolution and the formation of planetesimals. Space Sci. Rev. 205, 41–75 (2016).

    ADS 

    Google Scholar
     

  • Weidenschilling, S. J. Aerodynamics of solid bodies in the solar nebula. Mon. Not. R. Astron. Soc. 180, 57–70 (1977).

    ADS 

    Google Scholar
     

  • Kouchi, A. et al. Rapid growth of asteroids owing to very sticky interstellar organic grains. Astrophys. J. 566, L121–L124 (2002).

    ADS 
    CAS 

    Google Scholar
     

  • Wang, H., Bell, R. C., Iedema, M. J., Tsekouras, A. A. & Cowin, J. P. Sticky ice grains aid planet formation: unusual properties of cryogenic water ice. Astrophys. J. 620, 1027–1032 (2005).

    ADS 
    CAS 

    Google Scholar
     

  • Ros, K. & Johansen, A. Ice condensation as a planet formation mechanism. Astron. Astrophys. 552, A137 (2013).

    ADS 

    Google Scholar
     

  • Simon, J. B., Armitage, P. J., Li, R. & Youdin, A. N. The mass and size distribution of planetesimals formed by the steaming instability. I. The role of self-gravity. Astrophys. J. 822, 55 (2016).

    ADS 

    Google Scholar
     

  • Johansen, A. et al. A pebble accretion model for the formation of the terrestrial planets in the Solar System. Sci. Adv. 7, eabc0444 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Drążkowska, J. & Alibert, Y. Planetesimal formation starts at the snow line. Astron. Astrophys. 608, A92 (2017).

    ADS 

    Google Scholar
     

  • Morbidelli, A. et al. Contemporary formation of early Solar System planetesimals at two distinct radial locations. Nat. Astron. 6, 72–79 (2022).

    ADS 

    Google Scholar
     

  • Izidoro, A. et al. Planetesimal rings as the cause of the Solar System’s planetary architecture. Nat. Astron. 6, 357–366 (2021).

  • Lichtenberg, T., Dra̧żkowska, J., Schönbächler, M., Golabek, G. J. & Hands, T. O. Bifurcation of planetary building blocks during Solar System formation. Science 371, 365–370 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Piani, L. et al. Earth’s water may have been inherited from material similar to enstatite chondrite meteorites. Science 369, 1110–1113 (2020). This study showed that enstatite chondrites contain more hydrogen than previously expected, with a D/H ratio similar to that of Earth’s mantle, potentially indicating that Earth may have accreted significant water from the inner Solar System.

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Marrocchi, Y., Bekaert, D. V. & Piani, L. Origin and abundance of water in carbonaceous asteroids. Earth Planet. Sci. Lett. 482, 23–32 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • Vacher, L. G. et al. Hydrogen in chondrites: influence of parent body alteration and atmospheric contamination on primordial components. Geochim. Cosmochim. Acta 281, 53–66 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Wetherill, G. W. Occurrence of giant impacts during the growth of the terrestrial planets. Science 228, 877–879 (1985).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Raymond, S. N., Armitage, P. J. & Gorelick, N. Planet-planet scaterring in planetesimal disks. Astrophys. J. 699, L88–L92 (2009).

    ADS 
    CAS 

    Google Scholar
     

  • Pollack, J. B. et al. Formation of the giant planets by concurrent accretion of solids and gas. Icarus 124, 62–85 (1996).

    ADS 

    Google Scholar
     

  • Wang, H. et al. Lifetime of the solar nebula constrained by meteorite paleomagnetism. Science 355, 623–627 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lambrechts, M. & Johansen, A. Rapid growth of gas-giant cores by pebble accretion. Astron. Astrophys. 544, A32 (2012).

    ADS 

    Google Scholar
     

  • Johansen, A. & Lambrechts, M. Forming planets via pebble accretion. Annu. Rev. Earth Planet. Sci. 45, 359–387 (2017). This paper reviews all aspects of planet formation by pebble accretion, from dust growth over planetesimal formation to the accretion of protoplanets and fully grown planets with gaseous envelopes.

    ADS 
    CAS 

    Google Scholar
     

  • Kruijer, T. S. et al. Protracted core formation and rapid accretion of protoplanets. Science 344, 1150–1154 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kaminski, E., Limare, A., Kenda, B. & Chaussidon, M. Early accretion of planetesimals unraveled by the thermal evolution of the parent bodies of magmatic iron meteorites. Earth Planet. Sci. Lett. 548, 116469 (2020).

    CAS 

    Google Scholar
     

  • Dauphas, N. & Pourmand, A. Hf–W–Th evidence for rapid growth of Mars and its status as a planetary embryo. Nature 473, 489–492 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Barrat, J.-A. et al. A 4,565-My-old andesite from an extinct chondritic protoplanet. Proc. Natl Acad. Sci. USA 118, e2026129118 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jaupart, E., Charnoz, S. & Moreira, M. Primordial atmosphere incorporation in planetary embryos and the origin of neon in terrestrial planets. Icarus 293, 199–205 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • Olson, P. L. & Sharp, Z. D. Nebular atmosphere to magma ocean: a model for volatile capture during Earth accretion. Phys. Earth Planet. Inter. 294, 106294 (2019).

    CAS 

    Google Scholar
     

  • Yokochi, R. & Marty, B. A determination of the neon isotopic composition of the deep mantle. Earth Planet. Sci. Lett. 225, 77–88 (2004).

    ADS 
    CAS 

    Google Scholar
     

  • Williams, C. D. & Mukhopadhyay, S. Capture of nebular gases during Earth’s accretion is preserved in deep-mantle neon. Nature 565, 78–81 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Heber, V. S. et al. Isotopic mass fractionation of solar wind: evidence from fast and slow solar wind collected by the Genesis mission. Astrophys. J. 759, 121 (2012).

    ADS 

    Google Scholar
     

  • Péron, S., Moreira, M. & Agranier, A. Origin of light noble gases (He, Ne, and Ar) on Earth: a review. Geochem. Geophys. Geosyst. 19, 979–996 (2018).

    ADS 

    Google Scholar
     

  • Holland, G., Cassidy, M. & Ballentine, C. J. Meteorite Kr in Earth’s mantle suggests a late accretionary source for the atmosphere. Science 326, 1522–1525 (2009).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Broadley, M. W. et al. Identification of chondritic krypton and xenon in Yellowstone gases and the timing of terrestrial volatile accretion. Proc. Natl Acad. Sci. USA 117, 13997–14004 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Péron, S., Mukhopadhyay, S., Kurz, M. D. & Graham, D. W. Deep-mantle krypton reveals Earth’s early accretion of carbonaceous matter. Nature 600, 462–467 (2021).

    ADS 
    PubMed 

    Google Scholar
     

  • Lux, G. The behavior of noble gases in silicate liquids: solution, diffusion, bubbles and surface effects, with applications to natural samples. Geochim. Cosmochim. Acta 51, 1549–1560 (1987).

    ADS 
    CAS 

    Google Scholar
     

  • Walsh, K. J., Morbidelli, A., Raymond, S. N., O’Brien, D. P. & Mandell, A. M. A low mass for Mars from Jupiter’s early gas-driven migration. Nature 475, 206–209 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Dalou, C., Hirschmann, M. M., von der Handt, A., Mosenfelder, J. & Armstrong, L. S. Nitrogen and carbon fractionation during core–mantle differentiation at shallow depth. Earth Planet. Sci. Lett. 458, 141–151 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • Grewal, D. S., Dasgupta, R. & Farnell, A. The speciation of carbon, nitrogen, and water in magma oceans and its effect on volatile partitioning between major reservoirs of the Solar System rocky bodies. Geochim. Cosmochim. Acta 280, 281–301 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • McCoy, T. J., Dickinson, T. L. & Lofgren, G. E. Partial melting of the Indarch (EH4) meteorite: a textural, chemical, and phase relations view of melting and melt migration. Meteorit. Planet. Sci. 34, 735–746 (1999).

    ADS 
    CAS 

    Google Scholar
     

  • Grady, M. M. & Wright, I. P. Elemental and isotopic abundances of carbon and nitrogen in meteorites. Space Sci. Rev. 106, 231–248 (2003).

    ADS 
    CAS 

    Google Scholar
     

  • Rubie, D. C. et al. Accretion and differentiation of the terrestrial planets with implications for the compositions of early-formed Solar System bodies and accretion of water. Icarus 248, 89–108 (2015). This study modelled the accretion and differentiation of Earth, showing that to fit the composition of Earth’s mantle, material accreting to Earth probably become more oxidizing through time.

    ADS 
    CAS 

    Google Scholar
     

  • Javoy, M. et al. The chemical composition of the Earth: enstatite chondrite models. Earth Planet. Sci. Lett. 293, 259–268 (2010).

    ADS 
    CAS 

    Google Scholar
     

  • Dauphas, N. The isotopic nature of the Earth’s accreting material through time. Nature 541, 521–524 (2017). This study used a range of elements with distinct affinities for metal to show that the material accreted by Earth always comprised a large fraction of enstatite-type impactors.

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Palot, M., Cartigny, P., Harris, J. W., Kaminsky, F. V. & Stachel, T. Evidence for deep mantle convection and primordial heterogeneity from nitrogen and carbon stable isotopes in diamond. Earth Planet. Sci. Lett. 357–358, 179–193 (2012).

    ADS 

    Google Scholar
     

  • Cartigny, P. & Marty, B. Nitrogen isotopes and mantle geodynamics: the emergence of life and the atmosphere–crust–mantle connection. Elements 9, 359–366 (2013).

    CAS 

    Google Scholar
     

  • Hallis, L. J. et al. Evidence for primordial water in Earth’s deep mantle. Science 350, 795–797 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Loewen, M. W., Graham, D. W., Bindeman, I. N., Lupton, J. E. & Garcia, M. O. Hydrogen isotopes in high 3He/4He submarine basalts: primordial vs. recycled water and the veil of mantle enrichment. Earth Planet. Sci. Lett. 508, 62–73 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Fischer, R. A., Cottrell, E., Hauri, E., Lee, K. K. M. & Le Voyer, M. The carbon content of Earth and its core. Proc. Natl Acad. Sci. USA 117, 8743–8749 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grewal, D. S., Dasgupta, R., Sun, C., Tsuno, K. & Costin, G. Delivery of carbon, nitrogen, and sulfur to the silicate Earth by a giant impact. Sci. Adv. 5, eaau3669 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Iizuka-Oku, R. et al. Hydrogenation of iron in the early stage of Earth’s evolution. Nat. Commun. 8, 14096 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, J. et al. Origin of Earth’s water: chondritic inheritance plus nebular ingassing and storage of hydrogen in the core. J. Geophys. Res. Planets 123, 2691–2712 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • Bouhifd, M. A., Jephcoat, A. P., Heber, V. S. & Kelley, S. P. Helium in Earth’s early core. Nat. Geosci. 6, 982–986 (2013).

    ADS 
    CAS 

    Google Scholar
     

  • Burkhardt, C. et al. Terrestrial planet formation from lost inner Solar System material. Sci. Adv. 7, eabj7601 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Budde, G., Burkhardt, C. & Kleine, T. Molybdenum isotopic evidence for the late accretion of outer Solar System material to Earth. Nat. Astron. 3, 736–741 (2019).

    ADS 

    Google Scholar
     

  • Raymond, S. N., Izidoro, A. & Morbidelli, A. in Planetary Astrobiology (eds Meadows, V. et al.) 287–324 (Univ. Arizona Press, 2020). A broad overview of planetary system formation models, which attempt to explain the unique distribution of planets that exists in our Solar System.

  • Wood, B. J., Li, J. & Shahar, A. Carbon in the core: its influence on the properties of core and mantle. Rev. Mineral. Geochem. 75, 231–250 (2013).

    CAS 

    Google Scholar
     

  • Hirschmann, M. M. Constraints on the early delivery and fractionation of Earth’s major volatiles from C/H, C/N, and C/S ratios. Am. Mineral. 101, 540–553 (2016).

    ADS 

    Google Scholar
     

  • Marty, B. et al. An evaluation of the C/N ratio of the mantle from natural CO2-rich gas analysis: geochemical and cosmochemical implications. Earth Planet. Sci. Lett. 551, 116574 (2020).

    CAS 

    Google Scholar
     

  • Schlichting, H. E. & Mukhopadhyay, S. Atmosphere impact losses. Space Sci. Rev. 214, 34 (2018).

    ADS 

    Google Scholar
     

  • Tucker, J. M. & Mukhopadhyay, S. Evidence for multiple magma ocean outgassing and atmospheric loss episodes from mantle noble gases. Earth Planet. Sci. Lett. 393, 254–265 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • Canup, R. M. et al. Origin of the Moon. Preprint at https://arxiv.org/abs/2103.02045 (2021).

  • Hartmann, W. K. & Davis, D. R. Satellite-sized planetesimals and lunar origin. Icarus 24, 504–515 (1975).

    ADS 

    Google Scholar
     

  • Cameron, A. G. W. & Ward, W. R. The origin of the Moon. In Lunar and Planetary Conference 120 (LPI, 1976).

  • Lock, S. J., Bermingham, K. R., Parai, R. & Boyet, M. Geochemical constraints on the origin of the Moon and preservation of ancient terrestrial heterogeneities. Space Sci. Rev. 216, 109 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Canup, R. M. Forming a Moon with an Earth-like composition via a giant impact. Science 338, 1052–1055 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cuk, M. & Stewart, S. T. Making the Moon from a fast-spinning Earth: a giant impact followed by resonant despinning. Science 338, 1047–1052 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Porcelli, D., Woolum, D. & Cassen, P. Deep Earth rare gases: initial inventories, capture from the solar nebula, and losses during Moon formation. Earth Planet. Sci. Lett. 193, 237–251 (2001).

    ADS 
    CAS 

    Google Scholar
     

  • Genda, H. & Abe, Y. Enhanced atmospheric loss on protoplanets at the giant impact phase in the presence of oceans. Nature 433, 842–844 (2005).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Pepin, R. O. On the origin and early evolution of terrestrial planet atmospheres and meteoritic volatiles. Icarus 92, 2–79 (1991). Presents a model on how atmospheric escape processes may explain differences between Earth’s atmosphere and cosmochemical precursors.

    ADS 
    CAS 

    Google Scholar
     

  • Mukhopadhyay, S. & Parai, R. Noble gases: a record of Earth’s evolution and mantle dynamics. Annu. Rev. Earth Planet. Sci. 47, 389–419 (2019). A review of how volatiles were accreted to, and subsequently evolved, on Earth by examining the noble gas signatures found in the different mantle reservoirs and the atmosphere.

    ADS 
    CAS 

    Google Scholar
     

  • Kimura, K., Lewis, R. S. & Anders, E. Distribution of gold and rhenium between nickel-iron and silicate melts: implications for the abundance of siderophile elements on the Earth and Moon. Geochim. Cosmochim. Acta 38, 683–701 (1974).

    ADS 
    CAS 

    Google Scholar
     

  • Walker, R. J. Highly siderophile elements in the Earth, Moon and Mars: update and implications for planetary accretion and differentiation. Geochemistry 69, 101–125 (2009).

    CAS 

    Google Scholar
     

  • Albarede, F. et al. Asteroidal impacts and the origin of terrestrial and lunar volatiles. Icarus 222, 44–52 (2013).

  • Marty, B. & Yokochi, R. Water in the early Earth. Rev. Mineral. Geochem. 62, 421–450 (2006).

  • Hirschmann, M. M. Comparative deep Earth volatile cycles: the case for C recycling from exosphere/mantle fractionation of major (H2O, C, N) volatiles and from H2O/Ce, CO2/Ba, and CO2/Nb exosphere ratios. Earth Planet. Sci. Lett. 502, 262–273 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • Dasgupta, R., Buono, A., Whelan, G. & Walker, D. High-pressure melting relations in Fe–C–S systems: implications for formation, evolution, and structure of metallic cores in planetary bodies. Geochim. Cosmochim. Acta 73, 6678–6691 (2009).

    ADS 
    CAS 

    Google Scholar
     

  • Peslier, A. H., Schönbächler, M., Busemann, H. & Karato, S.-I. Water in the Earth’s interior: distribution and origin. Space Sci. Rev. 212, 743–810 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • Fulle, M. et al. The refractory-to-ice mass ratio in comets. Mon. Not. R. Astron. Soc. 482, 3326–3340 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Owen, T. & Bar-Nun, A. Comets, impacts, and atmospheres. Icarus 116, 215–226 (1995).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hartogh, P. et al. Ocean-like water in the Jupiter-family comet 103P/Hartley 2. Nature 478, 218–220 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Marty, B. et al. Xenon isotopes in 67P/Churyumov–Gerasimenko show that comets contributed to Earth’s atmosphere. Science 356, 1069–1072 (2017). Quantitative evidence for cometary contribution to Earth’s surface.

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bekaert, D. V., Broadley, M. W. & Marty, B. The origin and fate of volatile elements on Earth revisited in light of noble gas data obtained from comet 67P/Churyumov–Gerasimenko. Sci. Rep. 10, 5796 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Avice, G. & Marty, B. Perspectives on atmospheric evolution from noble gas and nitrogen isotopes on Earth, Mars & Venus. Space Sci. Rev. 216, 36 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Carr, M. H. & Head, J. W. III Oceans on Mars: an assessment of the observational evidence and possible fate. J. Geophys. Res. 108, 5042 (2003).


    Google Scholar
     

  • Way, M. J. & Del Genio, A. D. Venusian habitable climate scenarios: modeling Venus through time and applications to slowly rotating Venus‐like exoplanets. J. Geophys. Res. Planets 125, e2019JE006276 (2020).

  • Way, M. J. et al. Was Venus the first habitable world of our Solar System? Geophys. Res. Lett. 43, 8376–8383 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Donahue, T. M., Hoffman, J. H., Hodges, R. R. & Watson, A. J. Venus was wet: a measurement of the ratio of deuterium to hydrogen. Science 216, 630–633 (1982).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zahnle, K. J., Lupu, R., Catling, D. C. & Wogan, N. Creation and evolution of impact-generated reduced atmospheres of early Earth. Planet. Sci. J. 1, 11 (2020).


    Google Scholar
     

  • Catling, D. C. & Zahnle, K. J. The Archean atmosphere. Sci. Adv. 6, eaax1420 (2020). A review on the composition and fate of evolution of the atmosphere during the Archean eon.

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mojzsis, S. J., Harrison, T. M. & Pidgeon, R. T. Oxygen-isotope evidence from ancient zircons for liquid water at the Earth’s surface 4,300 Myr ago. Nature 409, 178–181 (2001).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wilde, S. A., Valley, J. W., Peck, W. H. & Graham, C. M. Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409, 175–178 (2001).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, J.-E., Bergin, E. A. & Lyons, J. R. Oxygen isotope anomalies of the Sun and the original environment of the Solar System. Meteorit. Planet. Sci. 43, 1351–1362 (2008).

    ADS 
    CAS 

    Google Scholar
     

  • Bouvier, A. & Wadhwa, M. The age of the Solar System redefined by the oldest Pb–Pb age of a meteoritic inclusion. Nat. Geosci. 3, 637–641 (2010).

    ADS 
    CAS 

    Google Scholar
     

  • Connelly, J. N., Bollard, J. & Bizzarro, M. Pb–Pb chronometry and the early Solar System. Geochim. Cosmochim. Acta 201, 345–363 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • Morbidelli, A., Lunine, J. I., O’Brien, D. P., Raymond, S. N. & Walsh, K. J. Building terrestrial planets. Annu. Rev. Earth Planet. Sci. 40, 251–275 (2012).

    ADS 
    CAS 

    Google Scholar
     

  • Desch, S. J., Kalyaan, A. & Alexander, C. M. O. The effect of Jupiter’s formation on the distribution of refractory elements and inclusions in meteorites. Astrophys. J. Suppl. Ser. 238, 11 (2018).

    ADS 

    Google Scholar
     

  • McCubbin, F. M. & Barnes, J. J. Origin and abundances of H2O in the terrestrial planets, Moon, and asteroids. Earth Planet. Sci. Lett. 526, 115771 (2019). This study showed that the earliest-formed planetesimals in the inner Solar System contained non-nebular hydrogen, indicating that interstellar ice was likely to be present in the early inner Solar System and could have contributed to the volatile budget of the terrestrial planets.

    CAS 

    Google Scholar
     

  • Lellouch, E. et al. The deuterium abundance in Jupiter and Saturn from ISO-SWS observations. Astron. Astrophys. 370, 610–622 (2001).

    ADS 
    CAS 

    Google Scholar
     

  • Geiss, J. & Gloeckler, G. in Primordial Nuclei and Their Galactic Evolution (eds Prantzos, N. et al.) 239–250 (Springer, 1998).

  • Bockelée-Morvan, D. et al. Cometary isotopic measurements. Space Sci. Rev. 197, 47–83 (2015).

    ADS 

    Google Scholar
     

  • Piani, L., Marrocchi, Y., Vacher, L. G., Yurimoto, H. & Bizzarro, M. Origin of hydrogen isotopic variations in chondritic water and organics. Earth Planet. Sci. Lett. 567, 117008 (2021).

    CAS 

    Google Scholar
     

  • Hässig, M. et al. Isotopic composition of CO2 in the coma of 67P/Churyumov–Gerasimenko measured with ROSINA/DFMS. Astron. Astrophys. 605, A50 (2017).


    Google Scholar
     

  • Owen, T., Mahaffy, P. R., Niemann, H. B., Atreya, S. & Wong, M. Protosolar nitrogen. Astrophys. J. 553, L77–L79 (2001).

    ADS 
    CAS 

    Google Scholar
     

  • Marty, B., Chaussidon, M., Wiens, R. C., Jurewicz, A. J. G. & Burnett, D. S. A 15N-poor isotopic composition for the Solar System as shown by genesis solar wind samples. Science 332, 1533–1536 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Meibom, A. et al. Nitrogen and carbon isotopic composition of the Sun inferred from a high-temperature solar nebular condensate. Astrophys. J. 656, L33–L36 (2007).

    ADS 
    CAS 

    Google Scholar
     

  • Füri, E. & Marty, B. Nitrogen isotope variations in the Solar System. Nat. Geosci. 8, 515–522 (2015).

  • Trinquier, A. et al. Origin of nucleosynthetic isotope heterogeneity in the solar protoplanetary disk. Science 324, 374–376 (2009).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Leya, I., Schönbächler, M., Wiechert, U., Krähenbühl, U. & Halliday, A. N. Titanium isotopes and the radial heterogeneity of the Solar System. Earth Planet. Sci. Lett. 266, 233–244 (2008).

    ADS 
    CAS 

    Google Scholar
     

  • Warren, P. H. Stable-isotopic anomalies and the accretionary assemblage of the Earth and Mars: a subordinate role for carbonaceous chondrites. Earth Planet. Sci. Lett. 311, 93–100 (2011). This study used stable istopes of Cr, Ti and O to reveal the existence of a fundamental dichotomy between carbonaceous and non-carbonaceous chondrites.

    ADS 
    CAS 

    Google Scholar
     

  • Kruijer, T. S., Kleine, T. & Borg, L. E. The great isotopic dichotomy of the early Solar System. Nat. Astron. 4, 32–40 (2020). A summary of cosmochemical and planetary observations that led to the concept of separation of outer and inner Solar System regions owing to the growth of giant planets.

    ADS 

    Google Scholar
     

  • Morbidelli, A. et al. Fossilized condensation lines in the Solar System protoplanetary disk. Icarus 267, 368–376 (2016).

    ADS 
    CAS 

    Google Scholar
     

  • Brasser, R. & Mojzsis, S. J. The partitioning of the inner and outer Solar System by a structured protoplanetary disk. Nat. Astron. 4, 492–499 (2020).

    ADS 

    Google Scholar
     

  • Mazor, E., Heymann, D. & Anders, E. Noble gases in carbonaceous chondrites. Geochim. Cosmochim. Acta 34, 781–824 (1970).

    ADS 
    CAS 

    Google Scholar
     

  • Huss, G. R. & Lewis, R. S. Noble gases in presolar diamonds II: Component abundances reflect thermal processing. Meteoritics 29, 811–829 (1994).

    ADS 
    CAS 

    Google Scholar
     

  • Ozima, M. & Zahnle, K. Mantle degassing and atmospheric evolution: noble gas view. Geochem. J. 27, 185–200 (1993).

    ADS 
    CAS 

    Google Scholar
     

  • Busemann, H., Baur, H. & Wieler, R. Primordial noble gases in “phase Q” in carbonaceous and ordinary chondrites studied by closed-system stepped etching. Meteorit. Planet. Sci. 35, 949–973 (2000).

    ADS 
    CAS 

    Google Scholar
     

  • Marty, B. Meteoritic noble gas constraints on the origin of terrestrial volatiles. Icarus 380, 115020 (2022).


    Google Scholar
     

  • Source link