May 4, 2024
Origin of structural degradation in Li-rich layered oxide cathode – Nature

Origin of structural degradation in Li-rich layered oxide cathode – Nature

  • Li, M. et al. Cationic and anionic redox in lithium-ion based batteries. Chem. Soc. Rev. 49, 1688–1705 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hu, E. et al. Evolution of redox couples in Li- and Mn-rich cathode materials and mitigation of voltage fade by reducing oxygen release. Nat. Energy 3, 690–698 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Assat, G. & Tarascon, J.-M. Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries. Nat. Energy 3, 373–386 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Sathiya, M. et al. Reversible anionic redox chemistry in high-capacity layered-oxide electrodes. Nat. Mater. 12, 827–835 (2013).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zheng, J. et al. Li‐and Mn‐rich cathode materials: challenges to commercialization. Adv. Energy Mater. 7, 1601284 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Choi, J. W. & Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 1, 16013 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Sathiya, M. et al. Origin of voltage decay in high-capacity layered oxide electrodes. Nat. Mater. 14, 230–238 (2015).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Pearce, P. E. et al. Evidence for anionic redox activity in a tridimensional-ordered Li-rich positive electrode β-Li2IrO3. Nat. Mater. 16, 580–586 (2017).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hong, J. et al. Metal–oxygen decoordination stabilizes anion redox in Li-rich oxides. Nat. Mater. 18, 256–265 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hu, S. et al. Insight of a phase compatible surface coating for long‐durable Li‐rich layered oxide cathode. Adv. Energy Mater. 9, 1901795 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Shang, H. et al. Suppressing voltage decay of a lithium-rich cathode material by surface enrichment with atomic ruthenium. ACS Appl. Mater. Interfaces 10, 21349–21355 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Singer, A. et al. Nucleation of dislocations and their dynamics in layered oxide cathode materials during battery charging. Nat. Energy 3, 641–647 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Yan, P. et al. Injection of oxygen vacancies in the bulk lattice of layered cathodes. Nat. Nanotechnol. 14, 602–608 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Assat, G. et al. Fundamental interplay between anionic/cationic redox governing the kinetics and thermodynamics of lithium-rich cathodes. Nat. Commun. 8, 2219 (2017).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Luo, K. et al. Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen. Nat. Chem. 8, 684–691 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Liu, T. et al. Understanding Co roles towards developing Co-free Ni-rich cathodes for rechargeable batteries. Nat. Energy 6, 277–286 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Liu, T. et al. Correlation between manganese dissolution and dynamic phase stability in spinel-based lithium-ion battery. Nat. Commun. 10, 4721 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Xu, C. et al. Bulk fatigue induced by surface reconstruction in layered Ni-rich cathodes for Li-ion batteries. Nat. Mater. 20, 84–92 (2021).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Xu, Z. et al. Charge distribution guided by grain crystallographic orientations in polycrystalline battery materials. Nat. Commun. 11, 83 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ulvestad, A. et al. Topological defect dynamics in operando battery nanoparticles. Science 348, 1344–1347 (2015).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhang, F. et al. Surface regulation enables high stability of single-crystal lithium-ion cathodes at high voltage. Nat. Commun. 11, 3050 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bi, Y. et al. Reversible planar gliding and microcracking in a single-crystalline Ni-rich cathode. Science 370, 1313–1317 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Qian, G. et al. Understanding the mesoscale degradation in nickel-rich cathode materials through machine-learning-revealed strain–redox decoupling. ACS Energy Lett. 6, 687–693 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Robinson, I. & Harder, R. Coherent X-ray diffraction imaging of strain at the nanoscale. Nat. Mater. 8, 291–298 (2009).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yoon, W.-S. et al. Local structure and cation ordering in O3 lithium nickel manganese oxides with stoichiometry Li[NixMn(2−x)/3Li(1−2x)/3]O2: NMR studies and first principles calculations. Electrochem. Solid-State Lett. 7, A167–A171 (2004).

    CAS 
    Article 

    Google Scholar
     

  • Yu, H. et al. Direct atomic‐resolution observation of two phases in the Li1.2Mn0.567Ni0.166Co0.067O2 cathode material for lithium‐ion batteries. Angew. Chem. Int. Ed. Engl. 52, 5969–5973 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Leifer, N. et al. Linking structure to performance of Li1.2Mn0.54Ni0.13Co0.13O2 (Li and Mn rich NMC) cathode materials synthesized by different methods. Phys. Chem. Chem. Phys. 22, 9098–9109 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lin, F. et al. Synchrotron X-ray analytical techniques for studying materials electrochemistry in rechargeable batteries. Chem. Rev. 117, 13123–13186 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Xu, Z. et al. Charging reactions promoted by geometrically necessary dislocations in battery materials revealed by in situ single‐particle synchrotron measurements. Adv. Mater. 32, 2003417 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Jha, S. K., Charalambous, H., Okasinski, J. S. & Tsakalakos, T. Using in operando diffraction to relate lattice strain with degradation mechanism in a NMC battery. J. Mater. Sci. 54, 2358–2370 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Qiu, B. et al. Metastability and reversibility of anionic redox-based cathode for high-energy rechargeable batteries. Cell Rep. Phys. Sci. 1, 100028 (2020).

    Article 

    Google Scholar
     

  • Li, W., Erickson, E. M. & Manthiram, A. High-nickel layered oxide cathodes for lithium-based automotive batteries. Nat. Energy 5, 26–34 (2021).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Zhao, S., Yan, K., Zhang, J., Sun, B. & Wang, G. Reaction mechanisms of layered lithium-rich cathode materials for high-energy lithium-ion batteries. Angew. Chem. Int. Ed. Engl. 60, 2208–2220 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Strehle, B. et al. The role of oxygen release from Li-and Mn-rich layered oxides during the first cycles investigated by on-line electrochemical mass spectrometry. J. Electrochem. Soc. 164, A400–A406 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Nakayama, K., Ishikawa, R., Kobayashi, S., Shibata, N. & Ikuhara, Y. Dislocation and oxygen-release driven delithiation in Li2MnO3. Nat. Commun. 11, 4452 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rana, J. et al. Structural changes in Li2MnO3 cathode material for Li‐ion batteries. Adv. Energy Mater. 4, 1300998 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Xiao, R., Li, H. & Chen, L. Density functional investigation on Li2MnO3. Chem. Mater. 24, 4242–4251 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Chen, H. & Islam, M. S. Lithium extraction mechanism in Li-rich Li2MnO3 involving oxygen hole formation and dimerization. Chem. Mater. 28, 6656–6663 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Li, L., Xie, Y., Maxey, E. & Harder, R. Methods for operando coherent X-ray diffraction of battery materials at the Advanced Photon Source. J. Synchrotron Radiat. 26, 220–229 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Robinson, I., Vartanyants, I., Williams, G., Pfeifer, M. & Pitney, J. Reconstruction of the shapes of gold nanocrystals using coherent X-ray diffraction. Phys. Rev. Lett. 87, 195505 (2001).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Maiti, S. et al. Understanding the role of alumina (Al2O3), pentalithium aluminate (Li5AlO4), and pentasodium aluminate (Na5AlO4) coatings on the Li and Mn-rich NCM cathode material 0.33Li2MnO3·0.67Li (Ni0.4Co0.2Mn0.4)O2 for enhanced electrochemical performance. Adv. Funct. Mater. 31, 2008083 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Li, J. et al. Structural origin of the high-voltage instability of lithium cobalt oxide. Nat. Nanotechnol. 16, 599–605 (2021).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Eum, D. et al. Voltage decay and redox asymmetry mitigation by reversible cation migration in lithium-rich layered oxide electrodes. Nat. Mater. 19, 419–427 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • House, R. A. et al. First-cycle voltage hysteresis in Li-rich 3d cathodes associated with molecular O2 trapped in the bulk. Nat. Energy 5, 777–785 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Csernica, P. M. et al. Persistent and partially mobile oxygen vacancies in Li-rich layered oxides. Nat. Energy 642–652(2021).

  • Liu, H. et al. Unraveling the rapid performance decay of layered high-energy cathodes: from nanoscale degradation to drastic bulk evolution. ACS Nano 12, 2708–2718 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Boulineau, A., Simonin, L., Colin, J. F., Bourbon, C. & Patoux, S. First evidence of manganese-nickel segregation and densification upon cycling in Li-rich layered oxides for lithium batteries. Nano Lett. 13, 3857–3863 (2013).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Teufl, T., Strehle, B., Müller, P., Gasteiger, H. A. & Mendez, M. A. Oxygen release and surface degradation of Li- and Mn-rich layered oxides in variation of the Li2MnO3 content. J. Electrochem. Soc. 165, A2718–A2731 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Chen, Z., Li, J. & Zeng, X. C. Unraveling oxygen evolution in Li-rich oxides: a unified modeling of the intermediate peroxo/superoxo-like dimers. J. Am. Chem. Soc. 141, 10751–10759 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wan, W., Sun, J., Su, J., Hovmöller, S. & Zou, X. Three-dimensional rotation electron diffraction: software RED for automated data collection and data processing. J. Appl. Crystallogr. 46, 1863–1873 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Source link