May 2, 2024
Ornithine aminotransferase supports polyamine synthesis in pancreatic cancer – Nature

Ornithine aminotransferase supports polyamine synthesis in pancreatic cancer – Nature

  • Rahib, L., Wehner, M. R., Matrisian, L. M. & Nead, K. T. Estimated projection of US cancer incidence and death to 2040. JAMA Netw. Open 4, e214708 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Siegel, R. L., Miller, K. D., Wagle, N. S. & Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 73, 17–48 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Encarnacion-Rosado, J. & Kimmelman, A. C. Harnessing metabolic dependencies in pancreatic cancers. Nat. Rev. Gastroenterol. Hepatol. 18, 482–492 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martinez-Reyes, I. & Chandel, N. S. Cancer metabolism: looking forward. Nat. Rev. Cancer 21, 669–680 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ginguay, A., Cynober, L., Curis, E. & Nicolis, I. Ornithine aminotransferase, an important glutamate-metabolizing enzyme at the crossroads of multiple metabolic pathways. Biology (Basel) 6, 18 (2017).

    PubMed 

    Google Scholar
     

  • Casero, R. A. Jr, Murray Stewart, T. & Pegg, A. E. Polyamine metabolism and cancer: treatments, challenges and opportunities. Nat. Rev. Cancer 18, 681–695 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zaytouni, T. et al. Critical role for arginase 2 in obesity-associated pancreatic cancer. Nat. Commun. 8, 242 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ying, H. et al. Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell 149, 656–670 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Son, J. et al. Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature 496, 101–105 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vande Voorde, J. et al. Improving the metabolic fidelity of cancer models with a physiological cell culture medium. Sci. Adv. 5, eaau7314 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hensley, C. T. et al. Metabolic heterogeneity in human lung tumors. Cell 164, 681–694 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sullivan, M. R. et al. Quantification of microenvironmental metabolites in murine cancers reveals determinants of tumor nutrient availability. eLife 8, e44235 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tsai, P. Y. et al. Adaptation of pancreatic cancer cells to nutrient deprivation is reversible and requires glutamine synthetase stabilization by mTORC1. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.2003014118 (2021).

  • Apiz-Saab, J. J. et al. Pancreatic tumors activate arginine biosynthesis to adapt to myeloid-driven amino acid stress. Preprint at bioRxiv https://doi.org/10.1101/2022.06.21.497008 (2022).

  • Menjivar, R. E. et al. Arginase 1 is a key driver of immune suppression in pancreatic cancer. eLife 12, e80721 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Miska, J. et al. Polyamines drive myeloid cell survival by buffering intracellular pH to promote immunosuppression in glioblastoma. Sci. Adv. 7, eabc8929 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gitto, S. B. et al. Difluoromethylornithine combined with a polyamine transport inhibitor is effective against gemcitabine resistant pancreatic cancer. Mol. Pharm. 15, 369–376 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nilsson, J. A. et al. Targeting ornithine decarboxylase in Myc-induced lymphomagenesis prevents tumor formation. Cancer Cell 7, 433–444 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Meyskens, F. L. Jr & Gerner, E. W. Development of difluoromethylornithine (DFMO) as a chemoprevention agent. Clin. Cancer Res. 5, 945–951 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • Holbert, C. E., Cullen, M. T., Casero, R. A. Jr & Stewart, T. M. Polyamines in cancer: integrating organismal metabolism and antitumour immunity. Nat. Rev. Cancer 22, 467–480 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Daune, G., Gerhart, F. & Seiler, N. 5-Fluoromethylornithine, an irreversible and specific inhibitor of l-ornithine:2-oxo-acid aminotransferase. Biochem. J. 253, 481–488 (1988).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seiler, N., Sarhan, S. & Knodgen, B. Inhibition of ornithine aminotransferase by 5-fluoromethylornithine: protection against acute thioacetamide intoxication by elevated tissue ornithine levels. Pharmacol. Toxicol. 70, 373–380 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zielonka, M. et al. Pharmacologic rescue of hyperammonemia-induced toxicity in zebrafish by inhibition of ornithine aminotransferase. PLoS ONE 13, e0203707 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burns, M. R., Graminski, G. F., Weeks, R. S., Chen, Y. & O’Brien, T. G. Lipophilic lysine–spermine conjugates are potent polyamine transport inhibitors for use in combination with a polyamine biosynthesis inhibitor. J. Med. Chem. 52, 1983–1993 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Samal, K. et al. AMXT-1501, a novel polyamine transport inhibitor, synergizes with DFMO in inhibiting neuroblastoma cell proliferation by targeting both ornithine decarboxylase and polyamine transport. Int. J. Cancer 133, 1323–1333 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Puleston, D. J. et al. Polyamine metabolism is a central determinant of helper T cell lineage fidelity. Cell 184, 4186–4202.e20 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wagner, A. et al. Metabolic modeling of single Th17 cells reveals regulators of autoimmunity. Cell 184, 4168–4185.e21 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alexander, E. T., Minton, A., Peters, M. C., Phanstiel, O. T. & Gilmour, S. K. A novel polyamine blockade therapy activates an anti-tumor immune response. Oncotarget 8, 84140–84152 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hayes, C. S. et al. Polyamine-blocking therapy reverses immunosuppression in the tumor microenvironment. Cancer Immunol. Res. 2, 274–285 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Park, M. H., Nishimura, K., Zanelli, C. F. & Valentini, S. R. Functional significance of eIF5A and its hypusine modification in eukaryotes. Amino Acids 38, 491–500 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hardbower, D. M. et al. Ornithine decarboxylase regulates M1 macrophage activation and mucosal inflammation via histone modifications. Proc. Natl Acad. Sci. USA 114, E751–E760 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pasini, A., Caldarera, C. M. & Giordano, E. Chromatin remodeling by polyamines and polyamine analogs. Amino Acids 46, 595–603 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Perera, R. M. & Bardeesy, N. Pancreatic cancer metabolism: breaking it down to build it back up. Cancer Discov. 5, 1247–1261 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Croghan, M. K., Aickin, M. G. & Meyskens, F. L. Dose-related α-difluoromethylornithine ototoxicity. Am. J. Clin. Oncol. 14, 331–335 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Romijn, J. C., Verkoelen, C. F. & Splinter, T. A. Problems of pharmacokinetic studies on α-difluoromethylornithine in mice. Cancer Chemother. Pharmacol. 19, 30–34 (1987).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Iwami, K., Wang, J. Y., Jain, R., McCormack, S. & Johnson, L. R. Intestinal ornithine decarboxylase: half-life and regulation by putrescine. Am. J. Physiol. 258, G308–G315 (1990).

    CAS 
    PubMed 

    Google Scholar
     

  • Kobayashi, K., Morris, H. P. & Katunuma, N. Studies on the turnover rates of ornithine aminotransferase in Morris hepatoma 44 and host liver. J. Biochem. 80, 1085–1089 (1976).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Simell, O. & Takki, K. Raised plasma-ornithine and gyrate atrophy of the choroid and retina. Lancet 1, 1031–1033 (1973).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bolkenius, F. N., Knodgen, B. & Seiler, N. dl-canaline and 5-fluoromethylornithine. Comparison of two inactivators of ornithine aminotransferase. Biochem. J. 268, 409–414 (1990).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Halmekyto, M., Alhonen, L., Alakuijala, L. & Janne, J. Transgenic mice over-producing putrescine in their tissues do not convert the diamine into higher polyamines. Biochem. J. 291, 505–508 (1993).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zigmond, E. et al. Suppression of hepatocellular carcinoma by inhibition of overexpressed ornithine aminotransferase. ACS Med. Chem. Lett. 6, 840–844 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mendoza, M. C., Er, E. E. & Blenis, J. The Ras–ERK and PI3K–mTOR pathways: cross-talk and compensation. Trends Biochem. Sci. 36, 320–328 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bodoky, G. et al. A phase II open-label randomized study to assess the efficacy and safety of selumetinib (AZD6244 [ARRY-142886]) versus capecitabine in patients with advanced or metastatic pancreatic cancer who have failed first-line gemcitabine therapy. Invest. New Drugs 30, 1216–1223 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kenney, C. et al. Phase II study of selumetinib, an orally active inhibitor of MEK1 and MEK2 kinases, in KRASG12R-mutant pancreatic ductal adenocarcinoma. Invest. New Drugs 39, 821–828 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hingorani, S. R. et al. Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell 4, 437–450 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jonkers, J. et al. Synergistic tumor suppressor activity of BRCA2 and p53 in a conditional mouse model for breast cancer. Nat. Genet. 29, 418–425 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sastra, S. A. & Olive, K. P. Quantification of murine pancreatic tumors by high-resolution ultrasound. Methods Mol. Biol. 980, 249–266 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wapnir, I. L., Wartenberg, D. E. & Greco, R. S. Three dimensional staging of breast cancer. Breast Cancer Res. Treat. 41, 15–19 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Samuels, Y. et al. Mutant PIK3CA promotes cell growth and invasion of human cancer cells. Cancer Cell 7, 561–573 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Debnath, J., Muthuswamy, S. K. & Brugge, J. S. Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods 30, 256–268 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Siddiqui, K. M. & Chopra, D. P. Primary and long term epithelial cell cultures from human fetal normal colonic mucosa. In Vitro 20, 859–868 (1984).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marin-Valencia, I. et al. Analysis of tumor metabolism reveals mitochondrial glucose oxidation in genetically diverse human glioblastomas in the mouse brain in vivo. Cell Metab. 15, 827–837 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mascanfroni, I. D. et al. Metabolic control of type 1 regulatory T cell differentiation by AHR and HIF1-α. Nat. Med. 21, 638–646 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chong, J., Wishart, D. S. & Xia, J. Using MetaboAnalyst 4.0 for comprehensive and integrative metabolomics data analysis. Curr. Protoc. Bioinformatics 68, e86 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Bookout, A. L. & Mangelsdorf, D. J. Quantitative real-time PCR protocol for analysis of nuclear receptor signaling pathways. Nucl. Recept. Signal. 1, e012 (2003).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang, Z. et al. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 45, W98–W102 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • The R Development Core Team. R: A language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2016).

  • Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feng, J., Liu, T., Qin, B., Zhang, Y. & Liu, X. S. Identifying ChIP-seq enrichment using MACS. Nat. Protoc. 7, 1728–1740 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Consortium, E. P. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ramirez, F., Dundar, F., Diehl, S., Gruning, B. A. & Manke, T. deepTools: a flexible platform for exploring deep-sequencing data. Nucleic Acids Res. 42, W187–191 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roehle, K. et al. cIAP1/2 antagonism eliminates MHC class I-negative tumors through T cell-dependent reprogramming of mononuclear phagocytes. Sci. Transl Med. 13, eabf5058 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Source link