May 18, 2024
Patterned cPCDH expression regulates the fine organization of the neocortex – Nature

Patterned cPCDH expression regulates the fine organization of the neocortex – Nature

  • Luo, L. Architectures of neuronal circuits. Science 373, eabg7285 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Sanes, J. R. & Zipursky, S. L. Synaptic specificity, recognition molecules, and assembly of neural circuits. Cell 181, 536–556 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Mountoufaris, G., Canzio, D., Nwakeze, C. L., Chen, W. V. & Maniatis, T. Writing, reading, and translating the clustered protocadherin cell surface recognition code for neural circuit assembly. Annu. Rev. Cell Dev. Biol. 34, 471–493 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Yogev, S. & Shen, K. Cellular and molecular mechanisms of synaptic specificity. Annu. Rev. Cell Dev. Biol. 30, 417–437 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Sudhof, T. C. The cell biology of synapse formation. J. Cell Biol. 220, e202103052 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Yagi, T. Molecular codes for neuronal individuality and cell assembly in the brain. Front. Mol. Neurosci. 5, 45 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Wu, Q. & Maniatis, T. A striking organization of a large family of human neural cadherin-like cell adhesion genes. Cell 97, 779–790 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Kriegstein, A. & Alvarez-Buylla, A. The glial nature of embryonic and adult neural stem cells. Annu. Rev. Neurosci. 32, 149–184 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Malatesta, P., Hartfuss, E. & Gotz, M. Isolation of radial glial cells by fluorescent-activated cell sorting reveals a neuronal lineage. Development 127, 5253–5263 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Noctor, S. C., Flint, A. C., Weissman, T. A., Dammerman, R. S. & Kriegstein, A. R. Neurons derived from radial glial cells establish radial units in neocortex. Nature 409, 714–720 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Noctor, S. C., Martinez-Cerdeno, V., Ivic, L. & Kriegstein, A. R. Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat. Neurosci. 7, 136–144 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Gao, P. et al. Deterministic progenitor behavior and unitary production of neurons in the neocortex. Cell 159, 775–788 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Luskin, M. B., Pearlman, A. L. & Sanes, J. R. Cell lineage in the cerebral cortex of the mouse studied in vivo and in vitro with a recombinant retrovirus. Neuron 1, 635–647 (1988).

    Article 
    CAS 

    Google Scholar
     

  • Rakic, P. Specification of cerebral cortical areas. Science 241, 170–176 (1988).

    Article 
    CAS 

    Google Scholar
     

  • Shen, Z. et al. Distinct progenitor behavior underlying neocortical gliogenesis related to tumorigenesis. Cell Rep. 34, 108853 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Walsh, C. & Cepko, C. L. Clonally related cortical cells show several migration patterns. Science 241, 1342–1345 (1988).

    Article 
    CAS 

    Google Scholar
     

  • Yu, Y. C., Bultje, R. S., Wang, X. Q. & Shi, S. H. Specific synapses develop preferentially among sister excitatory neurons in the neocortex. Nature 458, 501–504 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Yu, Y. C. et al. Preferential electrical coupling regulates neocortical lineage-dependent microcircuit assembly. Nature 486, 113–117 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Li, Y. et al. Clonally related visual cortical neurons show similar stimulus feature selectivity. Nature 486, 118–121 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Ohtsuki, G. et al. Similarity of visual selectivity among clonally related neurons in visual cortex. Neuron 75, 65–72 (2012).

    Article 
    CAS 

    Google Scholar
     

  • He, S. J., Li, Z. Z., Ge, S. Y., Yu, Y. C. & Shi, S. H. Inside-out radial migration facilitates lineage-dependent neocortical microcircuit assembly. Neuron 86, 1159–1166 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Wu, Q. et al. Comparative DNA sequence analysis of mouse and human protocadherin gene clusters. Genome Res. 11, 389–404 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Canzio, D. et al. Antisense lncRNA transcription mediates DNA demethylation to drive stochastic protocadherin alpha promoter choice. Cell 177, 639–653 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Tasic, B. et al. Promoter choice determines splice site selection in protocadherin α and γ pre-mRNA splicing. Mol. Cell 10, 21–33 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Jia, Z. et al. Tandem CTCF sites function as insulators to balance spatial chromatin contacts and topological enhancer-promoter selection. Genome Biol. 21, 75 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Esumi, S. et al. Monoallelic yet combinatorial expression of variable exons of the protocadherin-alpha gene cluster in single neurons. Nat. Genet. 37, 171–176 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Mountoufaris, G. et al. Multicluster Pcdh diversity is required for mouse olfactory neural circuit assembly. Science 356, 411–413 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Toyoda, S. et al. Developmental epigenetic modification regulates stochastic expression of clustered protocadherin genes, generating single neuron diversity. Neuron 82, 94–108 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Thu, C. A. et al. Single-cell identity generated by combinatorial homophilic interactions between α, β, and γ protocadherins. Cell 158, 1045–1059 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Rubinstein, R. et al. Molecular logic of neuronal self-recognition through protocadherin domain interactions. Cell 163, 629–642 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Brasch, J. et al. Visualization of clustered protocadherin neuronal self-recognition complexes. Nature 569, 280–283 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Schreiner, D. & Weiner, J. A. Combinatorial homophilic interaction between γ-protocadherin multimers greatly expands the molecular diversity of cell adhesion. Proc. Natl Acad. Sci. USA 107, 14893–14898 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Kostadinov, D. & Sanes, J. R. Protocadherin-dependent dendritic self-avoidance regulates neural connectivity and circuit function. eLife 4, e08964 (2015).

    Article 

    Google Scholar
     

  • Lefebvre, J. L., Kostadinov, D., Chen, W. S. V., Maniatis, T. & Sanes, J. R. Protocadherins mediate dendritic self-avoidance in the mammalian nervous system. Nature 488, 517–521 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Ing-Esteves, S. et al. Combinatorial effects of alpha- and gamma-protocadherins on neuronal survival and dendritic self-avoidance. J. Neurosci. 38, 2713–2729 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Chen, W. S. V. et al. Pcdhαc2 is required for axonal tiling and assembly of serotonergic circuitries in mice. Science 356, 406–410 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Zong, H., Espinosa, S., Su, H. H., Muzumdar, M. D. & Luo, L. Q. Mosaic analysis with double markers in mice. Cell 121, 479–492 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Bonaguidi, M. A. et al. In vivo clonal analysis reveals self-renewing and multipotent adult neural stem cell characteristics. Cell 145, 1142–1155 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Lv, X. et al. TBR2 coordinates neurogenesis expansion and precise microcircuit organization via protocadherin 19 in the mammalian cortex. Nat. Commun. 10, 3946 (2019).

    Article 

    Google Scholar
     

  • Kessaris, N. et al. Competing waves of oligodendrocytes in the forebrain and postnatal elimination of an embryonic lineage. Nat. Neurosci. 9, 173–179 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Kaneko, R. et al. Allelic gene regulation of Pcdh-α and Pcdh-γ clusters involving both monoallelic and biallelic expression in single Purkinje cells. J. Biol. Chem. 281, 30551–30560 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Yao, Z. Z. et al. A transcriptomic and epigenomic cell atlas of the mouse primary motor cortex. Nature 598, 103–110 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Prasad, T., Wang, X. Z., Gray, P. A. & Weiner, J. A. A differential developmental pattern of spinal interneuron apoptosis during synaptogenesis: insights from genetic analyses of the protocadherin-gamma gene cluster. Development 135, 4153–4164 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Lefebvre, J. L., Zhang, Y. F., Meister, M., Wang, X. Z. & Sanes, J. R. γ-Protocadherins regulate neuronal survival but are dispensable for circuit formation in retina. Development 135, 4141–4151 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Cadwell, C. R. et al. Cell type composition and circuit organization of clonally related excitatory neurons in the juvenile mouse neocortex. eLife 9, e52951 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Schmucker, D. et al. Drosophila Dscam is an axon guidance receptor exhibiting extraordinary molecular diversity. Cell 101, 671–684 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Hattori, D. et al. Dscam diversity is essential for neuronal wiring and self-recognition. Nature 449, 223–227 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Hattori, D., Millard, S. S., Wojtowicz, W. M. & Zipursky, S. L. Dscam-mediated cell recognition regulates neural circuit formation. Annu. Rev. Cell Dev. Biol. 24, 597–620 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Liu, C. et al. Dscam1 establishes the columnar units through lineage-dependent repulsion between sister neurons in the fly brain. Nat. Commun. 11, 4067 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Garrett, A. M., Schreiner, D., Lobas, M. A. & Weiner, J. A. γ-Protocadherins control cortical dendrite arborization by regulating the activity of a FAK/PKC/MARCKS signaling pathway. Neuron 74, 269–276 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Hippenmeyer, S. et al. Genetic mosaic dissection of Lis1 and Ndel1 in neuronal migration. Neuron 68, 695–709 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Wang, X., Qiu, R., Tsark, W. & Lu, Q. Rapid promoter analysis in developing mouse brain and genetic labeling of young neurons by doublecortin-DsRed-express. J. Neurosci. Res. 85, 3567–3573 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Dursun, I. et al. Effects of early postnatal exposure to ethanol on retinal ganglion cell morphology and numbers of neurons in the dorsolateral geniculate in mice. Alcohol Clin. Exp. Res. 35, 2063–2074 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Tasic, B. et al. Shared and distinct transcriptomic cell types across neocortical areas. Nature 563, 72–78 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Cadwell, C. R. et al. Multimodal profiling of single-cell morphology, electrophysiology, and gene expression using Patch-seq. Nat. Protoc. 12, 2531–2553 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Gu, Z. G., Eils, R. & Schlesner, M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32, 2847–2849 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Yao, Z. Z. et al. A taxonomy of transcriptomic cell types across the isocortex and hippocampal formation. Cell 184, 3222–3241 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Source link