May 25, 2024

Percolation transitions in compressed SiO2 glasses – Nature

  • 1.

    McMillan, P. F., Wilson, M., Daisenberger, D. & Machon, D. A density-driven phase transition between semiconducting and metallic polyamorphs of silicon. Nat. Mater. 4, 680–684 (2005).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 2.

    Sheng, H. W. et al. Polyamorphism in a metallic glass. Nat. Mater. 6, 192–197 (2007).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 3.

    Prescher, C. et al. Beyond 6-fold coordinated Si in SiO2 glass at ultrahigh pressures. Proc. Natl Acad. Sci. USA 114, 10041–10046 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 4.

    Deringer, V. L. et al. Origins of structural and electronic transitions in disordered silicon. Nature 589, 59–64 (2021).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 5.

    Hu, Q. Y. et al. Polymorphic phase transition mechanism of compressed coesite. Nat. Commun. 6, 6630 (2015).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 6.

    Bykova, E. et al. Metastable silica high pressure polymorphs as structural proxies of deep Earth silicate melts. Nat. Commun. 9, 4789 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 7.

    Debenedetti, P. G. & Stillinger, F. H. Supercooled liquids and the glass transition. Nature 410, 259–267 (2001).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 8.

    Loerting, T., Brazhkin, V. V. & Morishita, T. Multiple amorphous–amorphous transitions. Adv. Chem. Phys. 143, 29–82 (2009).

    CAS 

    Google Scholar
     

  • 9.

    Brazhkin, V. V., Lyapin, A. G. & Trachenko, K. Atomistic modeling of multiple amorphous–amorphous transitions in SiO2 and GeO2 glasses at megabar pressures. Phys. Rev. B 83, 132103 (2011).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • 10.

    Lin, J.-F. et al. Electronic bonding transition in compressed SiO2 glass. Phys. Rev. B 75, 012201 (2007).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • 11.

    Zeidler, A. et al. High pressure transformation of SiO2 glass from a tetrahedral to an octahedral network: a joint approach using neutron diffraction and molecular dynamics. Phys. Rev. Lett. 113, 135501 (2014).

    ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 12.

    Ryuo, E., Wakabayashi, D., Koura, A. & Shimojo, F. Ab initio simulation of permanent densification in silica glass. Phys. Rev. B 96, 054206 (2017).

    ADS 
    Article 

    Google Scholar
     

  • 13.

    Tsiok, O. B., Brazhkin, V. V., Lyapin, A. G. & Khvostantsev, L. G. Logarithmic kinetics of the amorphous–amorphous transformations in SiO2 and GeO2 glasses under high pressure. Phys. Rev. Lett. 80, 999–1002 (1998).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 14.

    Weigel, C. et al. Pressure-induced densification of vitreous silica: insight from elastic properties. Phys. Rev. B 100, 094102 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 15.

    Trachenko, K., Dove, M. T., Brazhkin, V. & El’kin, F. S. Network rigidity and properties of SiO2 and GeO2 glasses under pressure. Phys. Rev. Lett. 93, 135502 (2004).

    ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 16.

    Liang, Y., Miranda, C. R. & Scandolo, S. Mechanical strength and coordination defects in compressed silica glass: molecular dynamics simulations. Phys. Rev. B 75, 024205 (2007).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • 17.

    Sarnthein, J., Pasquarello, A. & Car, R. Origin of the high-frequency doublet in the vibrational spectrum of vitreous SiO2. Science 275, 1925–1927 (1997).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 18.

    Hosokawa, S. et al. Oxygen 2p partial density of states and bond angles around O atoms in SiO2 glass. J. Phys. Soc. Jpn 84, 024605 (2015).

    ADS 
    Article 

    Google Scholar
     

  • 19.

    Wu, M., Liang, Y., Jiang, J.-Z. & Tse, J. S. Structure and properties of dense silica glass. Sci. Rep. 2, 398 (2012).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 20.

    Murakami, M. et al. Ultrahigh-pressure form of SiO2 glass with dense pyrite-type crystalline homology. Phys. Rev. B 99, 045153 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 21.

    Harvey, J. P. & Asimow, P. D. Current limitations of molecular dynamic simulations as probes of thermo-physical behavior of silicate melts. Am. Min. 100, 1866–1882 (2015).

    ADS 
    Article 

    Google Scholar
     

  • 22.

    Kob, W. & Ispas, S. in Encyclopedia of Glass Science, Technology, History, and Culture (ed. Richet, P.) Ch. 2.9 (Wiley, 2020).

  • 23.

    Aradi, B., Hourahine, B. & Frauenheim, T. DFTB+, a sparse matrix-based implementation of the DFTB method. J. Phys. Chem. A 111, 5678–5684 (2007).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 24.

    Pauling, L. The principles determining the structure of complex ionic crystals. J. Am. Chem. Soc. 51, 1010–1026 (1929).

    CAS 
    Article 

    Google Scholar
     

  • 25.

    Sato, T. & Funamori, N. High pressure structural transformation of SiO2 glass up to 100 GPa. Phys. Rev. B 82, 184102 (2010).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • 26.

    Phillips, J. C. & Thorpe, M. F. Constraint, vector percolation and glass formation. Solid State Commun. 53, 699–702 (1985).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 27.

    Sauffer, D. & Aharony, A. Introduction to Percolation Theory (Taylor & Francis, 2003).

  • 28.

    Hu, Q. Y. et al. Stability limits and transformation pathways of α-quartz under high pressure. Phys. Rev. B 95, 104112 (2017).

    ADS 
    Article 

    Google Scholar
     

  • 29.

    Pabst, W. & Gregorová, E. Elastic properties of silica polymorphs—a review. Ceramics Silikáty 57, 167–184 (2013).

    CAS 

    Google Scholar
     

  • 30.

    Machon, D., Meersman, F., Wilding, M. C., Wilson, M. & McMillan, P. F. Pressure-induced amorphization and polyamorphism: inorganic and biochemical systems. Prog. Mater. Sci. 61, 216–282 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 31.

    Brovchenko, I. & Oleinikova, A. Multiple phases of liquid water. ChemPhysChem 9, 2660–2675 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 32.

    Yang, X., Tong, H., Wang, W. H. & Chen, K. Emergence and percolation of rigid domains during the colloidal glass transition. Phys. Rev. E 99, 062610 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 33.

    Ojovan, M. I. & Louzguine-Luzgin, D. V. Revealing structural changes at glass transition via radial distribution functions. J. Phys. Chem. B 124, 3186–3194 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 34.

    Tong, H., Sengupta,S. & Tanaka, H. Emergent solidity of amorphous materials as a consequence of mechanical self-organisation. Nat. Commun. 11, 4863 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 35.

    Trave, A., Tangney, P., Scandolo, S., Pasquarello, A. & Car, R. Pressure-induced structural changes in liquid SiO2 from ab initio simulations. Phys. Rev. Lett. 89, 245504 (2002).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 36.

    Karki, B. B., Bhattarai, D. & Stixrude, L. First-principles simulations of liquid silica: structural and dynamical behavior at high pressure. Phys. Rev. B 76, 104205 (2007).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • 37.

    Zhu, X. F. & Chen, L. F. First-principles molecular dynamics simulations of the structure of germanium dioxide under pressures. Phys. B 404, 4178–4184 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 38.

    Gartner, T. E. III, Torquato, S., Car, R. & Debenedetti, P. G. Manifestations of metastable criticality in the long-range structure of model water glasses. Nat. Commun. 12, 3398 (2021).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 39.

    Carré, A., Berthier, L., Horbach, J., Ispas, S. & Kob, W. Amorphous silica modeled with truncated and screened Coulomb interactions: a molecular dynamics simulation study. J. Chem. Phys. 127, 114512 (2007).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 40.

    Koehler, C., Hajnal, Z., Deak, P., Frauenheim, T. & Suhai, S. Theoretical investigation of carbon defects and diffusion in α-quartz. Phys. Rev. B 64, 085333 (2001).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • 41.

    Zwijnenburg, M. A., van Alsenoy, C. & Maschmeyer, T. Factors affecting ionicity in all-silica materials: a density functional cluster study. J. Phys. Chem. A 106, 12376–12385 (2002).

    CAS 
    Article 

    Google Scholar
     

  • 42.

    Gibbs, G. V. et al. Bonded interactions in silica polymorphs, silicates and siloxane molecules. Am. Min. 94, 1085–1102 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 43.

    Binder, K. & Kob, W. Glassy Materials and Disordered Solids (Word Scientific, 2005).

  • 44.

    Neutron Scattering Lengths and Cross Sections (NIST Center for Neutron Research, 2021); https://www.ncnr.nist.gov/resources/n-lengths/

  • 45.

    Fischer, H. E., Barnes, A. C. & Salmon, P. S. Neutron and X-ray diffraction studies of liquids and glasses. Rep. Prog. Phys. 69, 233–299 (2006).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 46.

    Waasmaier, D. & Kirfel, A. New analytical scattering-factor functions for free atoms and ions for free atoms and ions. Acta Crystallogr. A51, 416–431 (1995).

    CAS 
    Article 

    Google Scholar
     

  • 47.

    More, S., Andrey, V., Kravtsov, A. V., Dalal, N. & Gottlöber, S. The overdensity and masses of the friends-of-friends halos and universality of halo mass function. Astrophys. J. Suppl. Ser. 195, 4 (2011).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • 48.

    Zha, C.-S., Hemley, R. J., Maom, H.-K., Duffy, T. S. & Meade, C. Acoustic velocities and refractive index of SiO2 glass to 57.5 GPa by Brillouin scattering. Phys. Rev. B 50, 13105–13112 (1994).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 49.

    Petitgirard, S. et al. SiO2 glass density to lower-mantle pressures. Phys. Rev. Lett. 119, 215701 (2017).

    ADS 
    PubMed 
    Article 

    Google Scholar
     

  • 50.

    American Mineralogist Crystal Structure Database (AMCSD, 2021); http://rruff.geo.arizona.edu/AMS/amcsd.php

  • 51.

    Yi, Y. S. & Lee, K. L. Pressure-induced changes in local electronic structures of SiO2 and MgSiO3 polymorphs: insights from ab initio calculations of O K-edge energy-loss near-edge structure spectroscopy. Am. Min. 97, 897–909 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 52.

    Scheidl, K. S., Kurnosov, A., Boffa Ballaran, D. M., Angel, R. J., & Miletich, R. Extending the single-crystal quartz pressure gauge up to hydrostatic pressure of 19 GPa, J. Appl. Crystallogr. 49, 2129–2137 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 53.

    Buchen, J. et al. Equation of state of polycrystalline stishovite across the tetragonal–orthorhombic phase transition. J. Geophys. Res. Solid Earth 123, 7347–7360 (2018).

    ADS 
    Article 

    Google Scholar
     

  • 54.

    Hasmy, A., Foret, M., Pelous, J., & Jullien, R. Small-angle neutron-scattering investigation of short-range correlations in fractal aerogels: simulations and experiments. Phys. Rev. B 48, 9345–9353 (1993).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 55.

    O’Keeffe M. & Hyde B. G. in Structure and Bonding in Crystals (eds O’Keeffe, M. & Navrotsky, A.) 227–254 (Academic, 1981).

  • 56.

    Kono, Y., Shu, Y., Kenney-Benson, C., Wang, Y., & Shen, G. Structural evolution of SiO2 glass with Si coordination number greater than 6. Phys. Rev. Lett. 125, 205701 (2020).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Source link